
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Bc. Jan Kundrát

IMAP extension for mobile devices

Department of Software Engineering

Supervisor of the master thesis: RNDr. Ing. Jiří Peterka
Study programme: Informatics

Specialization: Software Engineering

Prague 2012

Acknowledgement
I would like to thank my supervisor, RNDr. Ing. Jiří Peterka, for his valuable advices
and numerous consultations.

Many experts on various IMAP-related mailing lists, especially Timo Sirainen, Bron
Gondwana, Arnt Gulbrandsen, Mark Crispin, Alexey Melnikov, Dave Cridland and
Adrien de Croy, have shared explanations about corner cases concerning various pro-
tocol features and provided feedback on my Internet-Draft proposals — thanks for
that.

Portions of my work on Trojitá were sponsored by KWest GmbH. and OpenMFG
LLC, dba xTuple. Thanks to Sebastian Wendt and John Rogelstad for making this
collaboration possible.

Adam Kudrna kindly corrected many mistakes in this text; the remaining errors,
however, are mine.

Finally, special thanks belong to Ms. Julie Růžičková for her willingness to listen
whenever I had something to discuss, patient support when I was debugging intricate
bugs and tremendous amount of empathy throughout the time, as well as to my parents
for supporting my studies.

1

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000
Coll., the Copyright Act, as amended, in particular the fact that the Charles University
in Prague has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Prague, July 27, 2012 Jan Kundrát

2

Název práce: IMAP extension for mobile devices
Autor: Jan Kundrát
Katedra: Katedra softwarového inženýrství
Vedoucí diplomové práce: RNDr. Ing. Jiří Peterka

Abstrakt:

Masové rozšíření chytrých telefonů, ke kterému došlo v posledních letech, s sebou při-
neslo i zvýšený zájem o mobilní přístup k elektronické poště. Protokol IMAP prošel od
svého vzniku mnoha úpravami; objevila se rozšíření přidávající nové funkce, ale i modi-
fikace optimalizující komunikaci přes potenciálně nespolehlivou síť. Tato práce si klade
za cíl provést analýzu stávajících rozšíření protokolu IMAP z pohledu jejich použitel-
nosti a přínosu využití v mobilních zařízeních. Obsahuje tři nově vytvořené návrhy
rozšíření, z nichž každé obohacuje protokol IMAP z jiného směru. Součástí práce je
též popis, jak byla tato rozšíření zahrnuta do programu Trojitá, autorova mobilního
e-mailového programu šířeného jako svobodný software.

Klíčová slova: IMAP, e-mail, rozšíření, mobilní přístup, optimalizace, datový tok,
Lemonade, Trojitá

Title: IMAP extension for mobile devices
Author: Jan Kundrát
Department: Department of Software Engineering
Supervisor: RNDr. Ing. Jiří Peterka

Abstract:

With the mass availability of smartphones, mobile access to e-mail is gaining impor-
tance. Over the years, the IMAP protocol has been extended with many features
ranging from extensions adding new functionality to those improving efficiency over
an unreliable network. This thesis evaluates the available extensions based on their
suitability for use in the context of a mobile client. Three new extensions have been
developed, each improving the protocol in a distinct way. The thesis also discusses how
most of these extensions were implemented in Trojitá, the author’s free software open
source IMAP e-mail client.

Keywords: IMAP, e-mail, extensions, mobile access, optimisation, data traffic, Lemon-
ade, Trojitá

3

Contents

1 Introduction 7
1.1 Structure of the Thesis . 7

2 IMAP Protocol Essentials 9
2.1 IMAP . 9

2.1.1 Basic Features . 9
2.1.2 Cache Filing Protocol . 10

2.2 Mailbox Synchronization . 11
2.2.1 Message Flags . 13
2.2.2 Immutable Data . 14

2.3 Protocol Design . 14
2.3.1 Additional Server-Side Features 15

3 IMAP Extensions 16
3.1 Optimizing the Protocol . 16

3.1.1 The LITERAL+ Extension . 16
3.1.2 Data Compression . 17
3.1.3 Improving Security through Cryptography 17
3.1.4 The IDLE Mode . 18

3.2 Improving Mailbox Synchronization . 19
3.2.1 The ESEARCH Extension . 20
3.2.2 Avoiding Flags Resynchronization via CONDSTORE 20
3.2.3 Optimizing UID Synchronization with QRESYNC 22

3.3 Fetching the Data . 25
3.3.1 The BINARY Extension . 25
3.3.2 Server-side Conversions via CONVERT 26
3.3.3 Metadata Decoding . 26

3.4 Updating Mailboxes . 27
3.4.1 Sorting Messages . 27
3.4.2 Threads and Conversations . 27
3.4.3 Incremental Sorting and Searching 28
3.4.4 Advanced Searching . 29
3.4.5 Obtaining Statistics for Other Mailboxes 30
3.4.6 Push-notification of Other Mailboxes’ State 30

3.5 Composing and Delivering Mail . 31
3.6 Further Improvements . 33

3.6.1 Debugging . 33
3.6.2 Internationalization . 33
3.6.3 Other Supported RFCs . 34
3.6.4 Out-of-scope Features . 35

3.7 Obsolete Extensions . 36

4

4 Proposed Extensions 37
4.1 Announcing the UIDs of Newly Arriving Messages during the QRESYNC

mode: the ARRIVED Extension . 37
4.1.1 Alternatives . 38

4.2 Improving Incremental Threading through Modified INTHREAD 39
4.2.1 Existing Approach . 39
4.2.2 The INCTHREAD Extension . 40

4.3 Submitting Internet Mail — the SENDMAIL Extension 41
4.3.1 Competing Proposals . 42

The “Lemonade Trio” . 42
Tunneling SMTP inside IMAP 43
The POSTADDRESS Draft . 43

4.3.2 The SENDMAIL Extension . 44

5 The Mobile IMAP 46
5.1 The Lemonade Profile . 46

5.1.1 Cross-Service Requirements . 46
5.1.2 Complicated Extensions . 47

5.2 State of Other Client Implementations 47
5.2.1 Apple iOS . 47
5.2.2 Android’s Native E-mail Client 47
5.2.3 Android’s K-9 Mail . 48
5.2.4 Modest / Tinymail . 48
5.2.5 Nokia’s Qt Messaging Framework 48
5.2.6 Trojitá . 49

5.3 Evaluating Extensions . 49
5.3.1 The Bare Minimum . 50

LITERAL+ . 50
IDLE . 50
ID . 50
BINARY . 50
UIDPLUS . 50
CHILDREN, LIST-EXTENDED and LIST-STATUS 50
ESEARCH . 51
COMPRESS=DEFLATE . 51

5.3.2 Useful Extensions . 51
CONDSTORE and QRESYNC 51
ENABLE . 51
MULTIAPPEND . 51
SENDMAIL . 51
CATENATE . 52

5.3.3 The Most Advanced Extensions 52
SORT, SORT=DISPLAY and THREAD 52
INCTHREAD, CONTEXT=SEARCH and CONTEXT=SORT . 52
SEARCH=FUZZY . 52
URLAUTH and BURL . 52
SPECIAL-USE and CREATE-SPECIAL-USE 52
CONVERT . 53
NOTIFY and MULTISEARCH 53

5

6 Trojitá’s Architecture 54
6.1 Overview of Components . 54

6.1.1 Handling Input/Output . 54
6.1.2 The Concept of Tasks . 55
6.1.3 Routing Responses . 56
6.1.4 Models and Proxies . 56
6.1.5 Lazy Loading and Cache . 57

6.2 The Mobile Version . 57
6.3 Regression Testing . 58

6.3.1 Scalability . 60
6.3.2 Command Pipelining . 60
6.3.3 Low-level optimization . 61

7 Conclusion 62
7.1 Future Work . 63

A Proposed Internet Drafts 64
A.1 draft-imap-qresync-arrived . 64
A.2 draft-imap-incthread . 72
A.3 draft-imap-sendmail . 83

B Acknowledgement 94
B.1 Commercial Applications . 94

B.1.1 Partnership with KWest GmbH. 94
B.1.2 Collaboration with OpenMFG LLC, dba xTuple 94
B.1.3 Nokia Developer Participation 94

B.2 Third-party Contributions . 95
B.3 Use of Existing Libraries . 96

C The Attached CD 97
C.1 Contents of the CD . 97
C.2 Build Instructions . 97

6

Chapter 1

Introduction

I also believe the only reason we still use email is that it’s impossible or very
difficult to replace, kind of like Facebook in a way.

(Heidar Bernhardsson [1])

The boom of mobile computing in the last few years has changed the way how people
work with their e-mail. After a short period where it appeared that the webmail was
the future and days of standard protocols were numbered, suddenly people realized
that in fact, there is a merit in having a standardized protocol for e-mail access.

Contemporary smartphones started to smear down the border between how a text
message, an instant-messaging (IM) communication and a traditional e-mail work. Sud-
denly, it is common to have a single “messaging” application aggregating communica-
tion history gathered from many distinct channels.

Even though some people prefer not to use these integrated facilities, their mere
existence and certain demand from the end-users present an unique opportunity for
standardization — it is easier to develop, test and deploy one particular data provider
suitable for use with many different services from multitude of vendors than having to
deploy a custom implementation for each social network which happens to be popular
this year and on the continent the device manufacturer decided to target. Engineers
working for cell phone and tablet vendors who are taking place in the IETF standard-
ization process are a clear evidence that the market recognizes this potential and that
nobody wants to loose.

In this thesis, I would like to explore the IMAP protocol [2] and its rich exten-
sion family, evaluating their features by a prism of a mobile client — a device which
might have a decent amount of CPU and memory resources, as common with today’s
smartphones and modern tablets, but whose network connection is prone to frequent
interruptions and might be payed based on the amount of transferred data, and whose
battery would get extinguished in a few hours if certain precautions are not taken.
It turns out that although many of the IMAP extensions are extremely useful for in-
creased efficiency of the client’s operation, there are still quite a few opportunities for
improvement, or outright deficiencies to correct.

1.1 Structure of the Thesis
The next chapter (p. 9) of this thesis provides a brief introduction to the baseline
IMAP protocol, its strengths and weaknesses and the general mode of operation. The
third chapter (p. 16) analyzes the existing IMAP extensions based on the “layer” on
which they add features to IMAP and on how they could be useful for the clients.
Their usefulness is illustrated through my experience in development of Trojitá, an

7

open source mobile IMAP e-mail client which I started and have been maintaining for
the last six years. In chapter four (p. 37), I have selected three completely different
areas in which the state of IMAP, as of 2012, can still be built upon. My improvements
are delivered in the format of the so-called Internet Drafts, materials directly used by
the IETF as the source of the RFC documents, the specifications which drive innovation
on the Internet. All of the extensions which I propose were presented for expert review
through the relevant communication channels and are on track to become the Internet-
Drafts and, hopefully, RFCs.

After the theoretical section, chapter five (p. 46) evaluates the status of the ex-
tension support among a selection of existing mobile clients available on the market
and on real devices. Chapter six serves as a short introduction for programmers into
how Trojitá, the mobile e-mail client developed for this thesis, operates. The work
is concluded and a discussion of the work planned in future is available from chapter
seven (p. 62).

All of the extensions which I am proposing are available in their traditional, formal
format in Appendix A (p. 64).

Finally, as Trojitá is a free software, open-source project, Appendix B (p. 94) ac-
knowledges the work of other developers who have contributed to Trojitá over the years
and lists the open source libraries required for its operation. It also mentions two com-
panies which decided to build their e-mail products on top of Trojitá. The instructions
on how to build Trojitá from source as well as the structure of the accompanying CD
are in Appendix C (p. 97).

8

Chapter 2

IMAP Protocol Essentials

This chapter provides a gentle introduction to peculiarities of the IMAP protocol and
presents an analysis of how its users can benefit from the unique protocol features.

2.1 IMAP
The IMAP protocol, as defined by RFC 3501 [2], is an internet protocol suitable for
managing e-mail folders and individual messages stored on a remote mail server. In
contrast to the older POP3 protocol [3], IMAP is actually intended to serve as an access
protocol. Where a POP3 client would happily download a full message from the mail
server, store it into a local mailbox and perform all further processing locally, the IMAP
mode of operation is much more complicated. These complications, however, bring a
whole slew of new features and interesting applications along.

For one thing, IMAP presents a single authoritative place storing messages — that
feature alone is a must in today’s world where everyone expects to be able to access
mail from their cell phones. Furthermore, given that all messages are located on a single
place, it is possible to perform efficient server-side operations like searching or sorting
over the whole mail store. IMAP also makes it possible to access individual message
parts like attachments separately, eliminating the need to download a huge message
before reading a short accompanying textual information. Finally, advanced servers
can recognize clients with limited resources and only present a subset of messages to
them.

At the same time, IMAP is an old protocol burdened with many compatibility
warts. Its designers were struggling with people objecting to novel ideas due to legacy
code in their mail implementations. Over the years, though, various protocol extensions
appeared. Some of them are extremely useful for contemporary clients, yet cannot be
relied upon as there is no general agreement on what extensions are really crucial, and
hence available on most IMAP servers.

The rest of this chapter provides a quick overview of the basic IMAP concepts and
how they relate to the usual client’s workflow. A detailed introduction to the basic
IMAP concepts can be found in my bachelor thesis on this topic [4, p. 9 - 19].

2.1.1 Basic Features

An IMAP server exports a set of mailboxes, folders which contain individual messages
(and further mailboxes, if the server allows that). Each message can be identified
either by its sequence number, an order in which it appears in mailbox, or by its
UID. Sequence numbers are by definition very volatile (deleting the first message in a
mailbox changes sequence numbers of all subsequent messages, for example) while the

9

UIDs provide better chances of persistence across reconnects. 1 When the UIDs have
to be invalidated for some reason, a per-mailbox integer property UIDVALIDITY is
incremented to signal all clients that previously used UIDs are no longer valid.

2.1.2 Cache Filing Protocol

As Mark Crispin, the principal author of the IMAP standard, has to say [5] [6], IMAP
is a cache filing protocol. That means that whatever the server thinks about a mailbox
state is the truth, and any state stored on the clients can be invalidated by the server
at any time. This critical design choice has impact on all further operations. IMAP
clients which do not anticipate such a behavior 2 are bound to operate in an inefficient
manner or fail in unexpected scenarios.

The first issue which typically comes up on the imap-protocol mailing list is treat-
ing UIDs as a persistent identifier of some kind. In fact, IMAP guarantees that a
triple of (mailbox name, UIDVALIDITY, UID) will not refer to any other message at
any time, but there’s no guarantee that the very same message, quite possibly in the
same mailbox, will not get another UID in future. 3 That said, on reasonable server
implementations, the UIDs should not get invalidated too often under normal circum-
stances. Given the IMAP protocol doesn’t offer anything else, they are widely used
(along with the UIDVALIDITY and when limited to the scope of a single mailbox) as
a semi-persistent identification of a message.

UIDs are assigned to the messages in a strictly monotonic sense, i.e. if message
A has a sequence number seqA and message B has sequence number seqB such as
seqA < seqB, it is true that UIDA < UIDB. UID numbers are also guaranteed to
never be reused in the same mailbox, unless the UIDVALIDITY changes.

Due to the facts described above, virtually any IMAP client which maintains a
persistent cache of the downloaded data uses UIDs to assign the cached data to indi-
vidual messages. Such an approach leads to a need to maintain a mapping between
the sequence numbers and the UID numbers of all messages in the mailbox — upon
reconnect, clients have to recognize whether any messages previously available in the
mailbox disappeared, and if they did, the clients should remove the cached data for
these messages. 4 This is in a strong contrast to the usual POP3 mode of operation
where the clients are expected to prune their cache only based on their local policy,
perhaps moving older messages to a designated archive, but definitely not discarding
the retrieved data as soon as the server doesn’t present the message any longer.

Furthermore, even during an established session the IMAP server informs about
messages being permanently deleted through the EXPUNGED response which contains
sequence number only. Given that the cache is usually addressed by UID, a caching
client shall maintain full UID mapping at any time.

1It shall be noted that IMAP does not guarantee UIDs to be persistent at all. The reason behind
this decision was to allow IMAP to publish messages from obsolete mail stores which could not have
been extended to support UIDs at all. Even today, UID changes have to be expected when signalled
through UIDVALIDITY.

2Such clients are usually called “POP3 clients converted to speak IMAP” on various IMAP-related
mailing lists. [7] [8]

3People have been trying to solve this issue for quite some time, but no standardized solution is
ready yet. The recent iterations of these proposals concentrate on providing a cryptographic hash of a
message body, but is far from clear whether doing so would get any traction. Furthermore, the hashes
are typically too long to serve as the only identifier of a message, so UIDs will definitely be around in
future.

4The reader shall be reminded that IMAP is a cache filing protocol, i.e. the server is always right
about what messages “are” in a mailbox and what messages are gone.

10

2.2 Mailbox Synchronization
When an IMAP client opens a mailbox, the server provides it with a few data points
about the state of the mail store. Among these data, there’s a number representing the
total amount of messages in the mailbox through the EXISTS response, the current
UIDVALIDITY value and, finally, the UIDNEXT which represents the lowest UID
which the next arriving message could possibly get assigned. Please note that the
UIDNEXT is merely a lower bound of the future UID; there is no guarantee that a
message with such UID would ever exist in the mailbox in future.

Having obtained these three values, the client can perform a few optimizations
before it proceeds to fetch an updated UID mapping from the IMAP server:

• If the UIDVALIDITY has changed, the client is obliged to completely purge any
data which it might have accumulated in its local persistent cache. This is a hard
requirement allowing the server to inform the client that no state whatsoever
can be reused from the previous connections. In the real world, this situation
shall be only reached under exceptional circumstances (like when migrating to
a completely different server implementation, or after having to restore the data
after an inadvertent damage caused by a reckless system administrator. 5

• If UIDNEXT is not available, the client has to resort to asking for the whole UID
mapping from scratch.

• If the UIDNEXT has decreased, the IMAP server exhibits a bug. This situation
is explicitly forbidden by the IMAP standard. Trojitá will, nevertheless, try to
work in this scenario by purging its cache and continuing as if no state was cached
locally.

• If the UIDNEXT has not changed since the last time the client has opened the
mailbox, the IMAP protocol says that no messages could have been delivered to
the mailbox at all.

– If the EXISTS remains constant as well, it is clear that no deletions have
taken place. This means that the cached sequence → UID mapping from
the last time is directly usable, and the UID syncing phase of the mailbox
synchronization is concluded.

– Otherwise, if the EXISTS has grown, the client is talking to a non-compliant
IMAP server which failed to adjust either UIDNEXT or UIDVALIDITY,
and cannot assume anything about the server’s behavior. Trojitá will grace-
fully degrade to a complete UID mapping resynchronization.

– If the EXISTS has decreased, one can be sure that some messages have
been deleted. In this situation, the client has two possible options on how
to proceed:

∗ One can try to perform a binary search in the list of messages to find
the first deleted message and ask for UIDs of all messages at the sub-
sequent positions. This is a heuristics which relies on an observation
that it is more likely for users working with big mailboxes to delete

5The IMAP standard nevertheless allows servers to increment the UIDVALIDITY upon each recon-
nect to accommodate server implementations which are unable to assign persistent UIDs at all. It shall
be noted that although such servers are compliant with the IMAP specification, they offer severely
limited user experience and little room for further optimization — the clients cannot reuse any data
from previous connections, so the overall efficiency is similar to accessing e-mail through the POP3
protocol.

11

messages at the end of the mailbox. However, each step in this incre-
mental search requires a complete round trip to the IMAP server over a
network; with a mailbox with tens of thousands of messages, this could
lead to 17 round trips. Given that real-world cellular networks like the
GPRS/EDGE infrastructure, unfortunately still common in the Czech
Republic, exhibit the RTT latencies which can often be larger than one
second [9], such an approach to incremental synchronization of the UID
mapping will have severe impact on the total synchronization time.

∗ Another way is to give up on possible bandwidth reduction possibility
and to fetch the complete UID mapping.

• If the UIDNEXT has grown, some messages might have arrived into the mailbox.
There’s no guarantee that any of them are still present, though, so the clients
could use another set of heuristics:

– If the increase in EXISTS is exactly the same as the growth of the UID-
NEXT, all of the new arrivals are still present in the mailbox and no message
have been expunged since the last time. The client can ask only for UIDs of
the new arrivals.

– In any other case, the situation is very similar to a changed EXISTS with
constant UIDNEXT and the same possible optimization about the binary
search might apply. Alternatively, clients could fetch a complete UID map-
ping.

If the decisions described above suggest that at least a part of the UID mapping
shall be updated, an IMAP client can — in absence of the optional extensions — use
one of the following ways to update the map. The first one is through the generic
FETCH command:

C: y1 UID FETCH 1:* (UID)
S: * 1 FETCH (UID 123)
S: * 2 FETCH (UID 125)
S: * 4 FETCH (UID 127)
S: * 3 FETCH (UID 126)
S: y1 OK Fetched

This command simply requests the FETCH response containing UID for each and
every message in the mailbox. The sample results show that the received data are in
no particular order and demonstrate that the UID range is not necessarily continuous.
If the heuristics shows that there is just a subset of messages with unknown UIDs, the
sequence range (the "1:*" string in the example above) shall be changed to only refer
to the relevant subset, like the "last_uidnext:*". It is also possible to request FLAGS
(which will be described later on) at this point.

Alternatively, the UID SEARCH command can be used as follows:

C: y1 UID SEARCH UID ALL
S: * SEARCH 123 125 127 126
S: y1 OK search completed

As one can see, the SEARCH response is much more compact. In practice, the
bandwidth saving is slightly lower as the UID discovery and FLAGS synchronization
can be merged into a single FETCH command, but the overhead is still at least four

12

bytes for each message in the mailbox, 6 which leads to at least 200 kB of useless data
on a mailbox with fifty thousands of messages.

2.2.1 Message Flags

I have mentioned message flags when describing the mailbox synchronization. These
flags allow the system and the mail user to attach a certain state to the messages —
information like whether the message has been read or replied to is tracked at this
level. Further applications include user-level arbitrary tagging of messages with flags
like “important” or “todo”.

Strictly speaking, asking for message flags of all messages in a mailbox is not neces-
sary, provided the program is capable of lazy-loading — flags could, for example, only
be fetched for those messages which are immediately visible on screen (probably with
some intelligent preload of items which will likely get to the viewport in near future),
avoiding a potentially expensive operation. On the other hand, contemporary user
agents typically have to display an aggregated statistics like “X unread messages, Y
total” to the user. IMAP certainly has methods for delivering such statistics, however,
the baseline specification’s only two ways of conveying that information are through
the STATUS command or via an explicit SEARCH. In practice, this design leads to a
pressing need to load all flags for all messages at the start of the session.

The problem with the STATUS command is that it is unfortunately forbidden from
being used on an actively selected mailbox [2, p. 43]. That makes this command usable
for an initial estimate, but prevents further updates — consider that an IMAP client
has opened a big mailbox and scrolled to the end of the message listing. Suddenly,
an * EXPUNGE 3 arrives, informing the client that the third message in the mailbox
is now gone. Because the flags of those “older” messages haven’t been loaded in this
scenario, the client has no way of knowing whether the number of unread messages shall
be updated. At this point, the client has no choice but to explicitly ask for message
flags of all messages or conduct a special SEARCH. The SEARCH command looking
for unread messages (or for any set of messages tagged with a certain flag, for that
matter) can surely be constructed, even the baseline IMAP4rev1 provides a way of
requesting that information. However, each SEARCH only provides the client with
an information about one kind of a particular flag. It is not an unreasonable idea to
design a client with further development in mind, most notably it might make a lot of
sense not to special-case the \UnSeen message flag — after all, certain applications will
benefit from having access to all messages matching the $SubmitPending flag or those
which were marked as a “Draft” by the user, for example. Unfortunately, statistics
about these user-defined flags cannot be determined via the STATUS command and
have to be discovered explicitly, either through a lot of separate SEARCH commands,
one for each “interesting” flag, or via an explicit synchronization through the FETCH
(FLAGS) command.

In short, deferring the flag synchronization certainly has some merit, but at the same
time, special-casing the \UnSeen flag for unread messages is not a viable long-term
solution. Given that extensions designed for speeding up the flags resynchronization
exist, Trojitá will always ask for a full flags mapping when synchronizing through the
baseline IMAP profile.

6If the FLAGS are fetched as well, the real overhead is just the "UID<space>" string — the number
and its trailing space is present in the SEARCH response as well and the overhead of the FETCH
response format is required for the updated flags anyway.

13

2.2.2 Immutable Data

In the previous sections, I have spoken about data which have to be resynchronized
during each reconnect to the mailbox, be it message flags or the UIDs. Other data
available through IMAP are, however, immutable by nature. Examples of these data
are message headers or the individual body parts.

IMAP is pretty unique in allowing its implementors to dissect a MIME message [10]
into individual body parts. In practice, this is a very useful feature — clients can read
a short textual body of a message before deciding whether to download a big binary
attachment etc. On the other hand, it requires servers to include a full MIME parser.
Some of them, notably the Google’s GImap, have been struggling with this requirement
for many years [11].

IMAP defines a data structure called ENVELOPE containing some of the most
interesting headers from the RFC 2822 [12] message. Among them, the Subject, Date,
From, Sender, Reply-To, To, Cc, Bcc, In-Reply-To and Message-Id are included.
Unfortunately, the References header is missing. 7 Even with this omission, the EN-
VELOPE is useful for clients which do not necessarily have to include RFC 2822-style
header parsing code. However, this usefulness is unfortunately further limited by not
including an RFC 2047 [13] decoder, so non-ASCII data in fields like senders’ human
readable names or in the subject field have to be decoded by the clients.

2.3 Protocol Design
The baseline version of IMAP, as defined in RFC 3501 [2], contains a few features which
limit its performance by a fair amount. One example of these features are IMAP’s
synchronizing literals.

Before the client is allowed to send a big amount of data to the server, it has to
ask for its explicit permission via a continuation request. While such an idea is good
on paper (and is probably intended to save bandwidth by allowing the server to refuse
huge uploads before the client sends them), in reality this leads to rather slow operation
because each transmission requires a full roundtrip over the network. Fortunately,
extensions like the LITERAL+ (see section 3.1.1 on page 16) have eliminated this
bottleneck.

Another manifestation of a situation which could potentially use an improvement
is the protocol’s requirement on clients to accept any response at any time, 8 which
is not applied consistently — the same RFC also mandates that the servers cannot
send EXPUNGE when no command is in progress [2, p. 72]. This particular wording
certainly has merits (it encourages client implementors to really accept anything at any
time) and is required for proper synchronization — if EXPUNGEs were allowed when
no command was in progress and a client issued a STORE command referencing a
message through its sequence number, that action could affect a completely different
message. This design is probably required due to the old decision to support addressing
through both sequence numbers and UIDs, but has a side effect of requiring constant
polling for mailbox updates. Again, extensions have emerged (see section 3.1.4 on
page 18) which try to eliminate this drawback through a special mode.

7The References header is useful when the client wants to be as compatible as possible with the
other agents that deal with message threading. Strictly speaking, the Message-Id and In-Reply-To
headers are sufficient for some forms of threading, but MUAs should strive to be “good citizens” and
support the References header as well.

8“The client MUST be prepared to accept any response at all times.” [2, p. 61]

14

2.3.1 Additional Server-Side Features

Having all messages available without much effort (or, certainly with much less effort
than a client), servers are in a unique position to make certain operations smoother,
faster and more efficient than performing on the client side.

The baseline IMAP specification contains provisions for server-side searching. Fea-
tures notably missing, however, are server-side sorting and conveying information about
message threading 9 which are available through optional extensions.

Certain scenarios (like having a cell phone with severely limited resources) could
benefit from server-side content conversion, similar to how the Opera Mobile browser
converts images to low-resolution versions for display on the phone’s screen. An exten-
sion for just that exists, but its support is rather scarce among the IMAP servers — in
fact, the author of this thesis was not able to find a single reasonably-deployed server
which would offer such a feature.

At the same time, the overall design of the IMAP protocol is rather promising;
it allows executing commands in parallel through pipelining and even the most basic
profile provides enough features to implement a reasonably efficient client which can
maintain its state over reconnects. It is therefore reasonable to start with the existing
state and try to build upon its solid foundation, improving the whole experience in the
process.

9Message threading refers to a mechanism which allows graphical user agents to present related
messages together. Recently re-branded as “conversations”, threading is in fact a pretty old idea which
builds on theMessage-Id, References and In-Reply-To headers, or, in its crudest form, just on similarity
of message subjects. Threading presents the human with a tree of messages where each immediate child
of a particular node represents a reply to the parent message.

15

Chapter 3

IMAP Extensions

It might be concluded from the brief analysis presented in the previous chapter that
certain features of the IMAP protocol are rather limiting in its real-world deployment.
Fortunately, IMAP was designed to include support for extensions which allow rather
substantial changes to its mode of operation. Throughout this chapter, I provide a
detailed analysis of opportunities where the baseline IMAP protocol leaves something
to be desired. Many such gaps have been addressed by various extensions over the last
twenty years; these extensions are thoroughly explained and evaluated on their merits.
Information about their support in Trojitá is also included.

3.1 Optimizing the Protocol
Before dwelling into more advanced topics like improving the synchronization perfor-
mance or adding new features, let’s have a look at the basic layer of the IMAP protocol
and investigate how these affect performance.

3.1.1 The LITERAL+ Extension

One of the lowest-hanging optimization fruit to cater are IMAP’s synchronizing literals.
In the basic IMAP, before a client proceeds with tasks involving upload of binary data
(or any data over a certain size, for that matter), it has to ask for an explicit server’s
approval based on the length of the data in question. As it has been shown previously,
this confirmation imposes a full round trip over the network, inducing latency and
destroying any potential pipelining improvements.

The LITERAL+ extension (RFC 2088 [14]) simply lifts the requirement of having
to wait for the server’s continuation requests by a subtle change of the syntax. Adding
an overhead of just one byte, the latency is completely eliminated and communication
gets rapidly streamlined. One can go as far as to say that the code paths for dealing
with LITERAL+ data are actually simpler than having to deal with the old-fashioned
synchronizing literals. Consider the following example:

S: * OK
C: A001 LOGIN {11}
The client has to wait for server’s response before proceeding any further
S: + go ahead
C: FRED FOOBAR {7}
A second round-trip wait occurs here
S: + go ahead
C: fat man
S: A001 OK LOGIN completed

16

When using the LITERAL+ syntax, the whole interaction happens without having
to wait for the server:

S: * OK
C: A001 LOGIN {11+}
C: FRED FOOBAR {7+}
C: fat man
S: A001 OK LOGIN completed

Trojitá includes full support for the LITERAL+ extension — when it de-
tects the LITERAL+ capability, it will immediately switch to using non-
synchronizing literals for increased performance.

3.1.2 Data Compression

IMAP is a textual, line-based protocol. As such, it presents extremely good opportuni-
ties for compression — using the tried DEFLATE algorithm [15], the basic IMAP chat-
ter can be easily compressed to 25 - 40 % of its original size [16, p. 4]. RFC 4978 [16] pro-
vides mechanism for exactly this functionality through the COMPRESS=DEFLATE
capability.

Trojitá ships with full support for this extension through the permissively
licensed zlib library. Unfortunately, the Qt’s QSslSocket currently doesn’t
provide a way to reliably tell whether the SSL connection is already employ-
ing compression. When combined with IMAP servers hidden behind SSL
accelerators or load balancers (i.e. in situations where the server does not
have a clear idea whether the session is already compressed either), this
has a risk of needlessly trying to compress data twice. This is a limitation
in system libraries which cannot be overcome without resorting to patching
system components or conducting non-portable hacks.

3.1.3 Improving Security through Cryptography

RFC 2595 [17] deals with best practices for establishing SSL/TLS connections to the
IMAP server.

Trojitá follows these recommendations, most notably it tries to establish a
secure channel over STARTTLS command even without an explicit action
on the user’s side, should the server be configured to advertise itself as not
accepting logins over insecure connections through the LOGINDISABLED
capability. A manual override is available in situations where the SSL en-
cryption is not available.
In advent of the recent breaches of many well-known (and widely trusted)
Certificate Authorities [18], Trojitá also comes with support for SSL key
pinning [19]. The trust model presented to the user is similar to handling
of SSH servers’ public keys with OpenSSH — upon first connection, the user
is always presented with a choice of whether to accept the certificate or not,
along with a confirmation about whether the operating system and its policy
considers the certificate as “trusted”. No matter what the system-wide policy
says, a changed public key is always considered a threat and the situation is
presented to the user accordingly.

17

3.1.4 The IDLE Mode

I have mentioned that even though the protocol requires clients to be ready to accept
any responses at any time, in practice, servers are forbidden to send EXPUNGEs when
no command is in progress. This requirement is necessary to prevent a dangerous
resynchronization as the server cannot possibly know whether the client has started to
issue an UID-less STORE command which references messages through their sequence
numbers. Unfortunately, this directly translates to clients having to poll the server
quite often if they care about updates concerning the deleted messages.

Any protocol which uses polling looks bad on paper — having to poll leads to in-
creased latency and higher power usage because the equipment has to actively check for
updates every now and then. In contrast, push-based updates allow the client to enter
a low-power state where it merely waits to be woken up when a change occurs. Such a
mode is exactly what the IDLE extension defined by RFC 2177 [20] adds to IMAP. It
must, however, be said that real-world concerns related to firewall timeouts and espe-
cially the NAT traversal has limited the usefulness of the IDLE command somewhat,
even to the extent where Mark Crispin, the original author of the IMAP protocol,
claims that “I see no particular benefit to use of IDLE on a desktop machine” [21] —
a view which is not shared by the wider community [22] [23], yet certainly worth a
consideration.

The IDLE extension is basically a hack on top of the IMAP protocol which reverses
a mantra of the basic IMAP specification [2, p. 72]:

A command is not “in progress” until the complete command has been re-
ceived; in particular, a command is not “in progress” during the negotiation
of command continuation.

With IDLE, a typical interaction might look like this one:

C: A004 IDLE
S: * 2 EXPUNGE
S: * 3 EXISTS
S: + idling
...time passes; another client expunges message 3...
S: * 3 EXPUNGE
S: * 2 EXISTS
...time passes; new mail arrives...
S: * 3 EXISTS
C: DONE
S: A004 OK IDLE terminated
C: A005 FETCH 3 ALL
S: * 3 FETCH (...)
S: A005 OK FETCH completed
C: A006 IDLE

The whole effect of the IDLE command is therefore to indicate to the server that
the client is really willing to listen for any updates to the mailbox state. Because
of compatibility concerns with legacy mail stores, the IDLE extension still does not
mandate the server to actually send updates about any changes as soon as they are
conducted — indeed, a server which internally polls every fifteen minutes to check
whether a message has arrived is fully compliant with the IDLE extension, albeit rather
useless to user who might expect (and, one might add, rightly so) to be instantly notified
about changes to the mailbox.

18

Trojitá includes full support for the IDLE extension and will enter that
mode automatically shortly after a mailbox is selected. A simple heuristics
is implemented which delays re-entering the IDLE command if it is likely
that the connection will be reused for any other purpose in near future,
further eliminating needless data transfers. Unfortunately, Trojitá is at the
mercy of the IMAP server when it comes to superfluous data transfers, so it
cannot prevent the “pings” sent even when the connection does not contain
a gateway with overly short timeouts.

3.2 Improving Mailbox Synchronization
The previous section dealt with optimizing the overall IMAP protocol as a whole. At
this stage, let’s have a look at more specific issues which cannot be easily overcome
through generic measures like data compression using off-the-shelf algorithms or up-
dates to the basic protocol flows.

In the basic IMAP, neither the server nor the client are required to keep any per-
sistent state. Clearly, it is beneficiary for a client to keep downloaded copies of the
immutable mailbox/message data (consult section 2.2.2 on page 14 in its persistent
cache for some time, should the device constraints allow such a storage. There is still
quite a lot of other data which has to be validated while the mailbox is being resyn-
chronized. Consider the following scenario where a mail user agent opens a mailbox
with a thousand of messages which has witnessed expunges and new arrivals since the
last time it was opened:

C: y1 SELECT foo
S: * 1000 EXISTS
S: * OK [UIDVALIDITY 12345] UIDs valid
S: * OK [UIDNEXT 2345] Next UID
S: y1 OK Selected
C: y2 UID SEARCH ALL

The following response has been shortened for demonstration purposes. In
practice, it will have to contain a thousand of numbers.

S: * SEARCH 2 4 5 6 7 8 9 10 ... 2290 2310 2311 2312 2333
S: y2 OK Search completed
C: y3 FETCH 1:1000 (FLAGS)
S: * 1 FETCH (FLAGS ())
S: * 2 FETCH (FLAGS (\\Seen))
S: * 3 FETCH (FLAGS (\\Recent \$Answered))

996 additional FETCH responses were omitted from this example for brevity.

S: * 1000 FETCH (FLAGS (\\Seen))
S: y3 OK fetched

Let’s identify two steps which substantially contribute to the transferred data:

• synchronizing the UIDs,

• updating flags.

19

The rest of this section takes a look at optimization opportunities at each of these
stages. Please keep in mind that some basic optimization heuristics concerning the UID
synchronization were discussed in section 2.2 on page 11 along with reasons on why
these steps are necessary in clients willing to maintain an offline cache of immutable
data.

3.2.1 The ESEARCH Extension

As seen in the protocol sample, the SEARCH response containing UIDs of all messages
in a mailbox can be rather large. At the same time, chances are that at least some of
the adjacent messages might have been assigned contiguous UIDs — this is certainly
not a requirement per se, but quite a few IMAP servers internally do assign UIDs from
a per-mailbox counter. Real-world, albeit anecdotal evidence [24] indicates that this
scenario is very common, and therefore it might make sense to transmit the UIDs of
all messages using the sequence-set [2, p. 89] syntax. The ESEARCH extension, as
defined in RFC 4731 [25], allows exactly that:

S: * ESEARCH [TAG "y12"] UID 1,3:9,17:25,30:1000

At the time of the ESEARCH adoption, the imap-protocol mailing list witnessed
a disagreement on how exactly the sequence-set shall be interpreted. Mark Crispin,
the author of the original IMAP protocol (but not of the ESEARCH extension) im-
plemented ESEARCH in a different manner. He chose to take an advantage of the
RFC3501-style definition of UID sequences where the RFC mandates that servers shall
treat non-existent UIDs given in sequence sets as if they weren’t referenced from the
command at all. For example, if the mailbox contained just UIDs 3, 5 and 10, a client
using the 3:10 construct has to be interpreted as if it requested sequence-set 3,5,10.
Doing so present certain optimization opportunities to the servers, for example when
the client already knows the UID mapping and performs a server-side search for mes-
sages matching certain criteria and the result set accurately matches an adjacent range
of messages, the server could take advantage of this adjacency a return a sequence-set
in the form of 10:150, even though the mailbox contains only a few UIDs from this
range [26]. Furthermore, his another point is that the clients already have two other
ways of obtaining the UID mapping, either through the UID SEARCH ALL command
or via an explicit UID FETCH 1:*. Needless to say, such a reasoning fails to take into
account potential bandwidth savings which can be rather substantial on “reasonable”
mailboxes. In the end, the authors of the RFC 4731 disagreed with Crispin [27] [28].

The ESEARCH extension allows nice bandwidth savings, so Trojitá tries to
use it if the server says that it is supported.

In addition to that, format of the returned responses is changed so that it also in-
cludes the tag of the command which caused it, allowing much more aggressive pipelin-
ing — for example, clients are free to perform the UID discovery at the same time as
running a user-initiated search. On the other hand, even in presence of ESEARCH, the
UID mapping still has to be synchronized explicitly. This requirement is only lifted in
the QRESYNC extension (section 3.2.3 on page 22). Before describing that, though,
it is necessary to have a look at the CONDSTORE.

3.2.2 Avoiding Flags Resynchronization via CONDSTORE

Leaving the UID synchronization alone for a while, let’s have a look at various ways of
eliminating the need to ask for changed message flags. In this case, no extension trying

20

to reduce the data overhead of the FETCH response was proposed, but the problem
got attacked from another side.

The whole point of flags synchronization is to be able to pick up changes which have
happened since the last time the mailbox was selected. If only the server was somehow
able to assign a “serial number” to each change, clients could subsequently ask for all
changes which have happened after a certain point. The CONDSTORE extension from
RFC 4551 [29] works in this way.

CONDSTORE-capable servers share a concept of “modification sequence”, aMOD-
SEQ. Each message in a mailbox is assigned an unsigned 64bit integer. Whenever
message metadata (like its flags) change, the MODSEQ of that particular message
gets increased. Each increment is also required to reach a value which is higher than
MODSEQ of any other message in that mailbox. Similarly, a mailbox is assigned a
HIGHESTMODSEQ, an unsigned 64bit integer which is interpreted as “no message
has ever had a MODSEQ higher than this number” — of course subject to the usual
UIDVALIDITY rules. 1

When a CONDSTORE-capable client opens a mailbox which was previously synced
(and if the server supports CONDSTORE as well, of course — keep in mind that the
IMAP extensions are strictly voluntary in their nature), at first it synces the UID
mapping as usual, possibly through the ESEARCH command discussed earlier. After
that, the client can use an extended variant of the FETCH command to ask for flags of
those messages whose currentMODSEQ is higher than the HIGHESTMODSEQ which
the client has remembered previously. The server will respond with regular FETCH
responses for each affected message. In result, after this interaction is completed, the
client is aware of all pending flag changes and is fully resynchronized again.

This is how a typical synchronization might look like:

C: y1 SELECT foo (CONDSTORE)
S: * 1000 EXISTS
S: * OK [UIDVALIDITY 12345] UIDs valid
S: * OK [UIDNEXT 2345] Next UID
S: * OK [HIGHESTMODSEQ 715194045007]
S: y1 OK Selected

At this point, the client will obtain the UID mapping, likely through the
UID SEARCH or its ESEARCH variant:

C: y2 UID SEARCH RETURN () ALL
S: * ESEARCH (TAG "y2") UID ALL 2,4:10,21:1008,2290,2310:2312,2333
S: y2 OK Search completed

At this point the CONDSTORE extension can be finally utilized -- only changed
flags will be transmitted:

C: y3 UID FETCH 1:1000 (FLAGS) (CHANGEDSINCE 613184045007)
S: * 997 FETCH (UID 2310 MODSEQ 715194045007 FLAGS (\\Seen \\Deleted))
S: * 1000 FETCH (UID 2333 MODSEQ 715194045005 FLAGS (\\Seen))
S: y3 OK Fetched

1As always, any change in UIDVALIDITY directly translates to a full cache flush and discarding
any data previously remembered for the affected mailbox. This includes not only the immutable
data of messages, but also the UIDs, message flags and — in this extension — the MODSEQ and
HIGHESTMODSEQ values.

21

The algorithm is race-free — as every message has a separate MODSEQ counter,
the delay between the SELECT and FETCH command doesn’t lead to data loss; by
the time the FETCH completes, the server guarantees that the client has received any
pending updates since the last synchronization.

The CONDSTORE is an extremely valuable extension; its savings on big mailboxes
are predictable and automatic — instead of having to transmit O(n) responses where n
is the number of messages, only O(m) are required under QRESYNC with m being the
number of modifications. This is an extension which, unfortunately, places a certain
burden on the IMAP server which has to track the serial numbers of messages’ meta-
data; however, given the obvious reductions in bandwidth, many servers have already
implemented it, most notably the Dovecot and Cyrus open source IMAP servers.

Trojitá includes full support for this extension, making use of it whenever
it is available.

3.2.3 Optimizing UID Synchronization with QRESYNC

The CONDSTORE extension discussed earlier has brought in the concept of a server-
side state tracking and used that to allow bandwidth-efficient way of synchronizing flag
changes. Given that a CONDSTORE-capable server already tracks certain state, it
might be worthwhile to somehow extend this state to cover the deleted messages as
well. As it turns out, such a mechanism is implemented in the QRESYNC extension
which is defined by RFC 5162 [30].

The basic idea behind QRESYNC is that as long as the UID mapping was fresh
at some point in past, it is only necessary to inform the client about which UIDs from
that set are no longer there and push out the UIDs of newly arrived messages.

The QRESYNC extension modifies the SELECT command so that it includes a
few more parameters. First of all, the updated version of this command includes a
tuple of (UIDNEXT, HIGHESTMODSEQ) as known to the client. If the UIDNEXT
did not change, the server will have a look at the HIGHESTMODSEQ value and in
addition to essentially behaving as a CONDSTORE server, it also sends out a list of
expunged messages. 2 A new response is defined for this purpose, the VANISHED
EARLIER.

In format similar to the ESEARCH response, the VANISHED EARLIER contains
a sequence-set of UIDs which the server believes that the client considers to be present
in the mailbox. Not only are these UIDs transmitted in a compact syntax, thanks to the
sequence-set format, but the response typically contains only such UIDs which were
just removed. The actual wording (and therefore the implications of this extension) are
slightly different — the server is free to inform the clients about any UIDs, as long as
they aren’t in the mailbox right now, at the time of the sync. This is motivated by the
need to relieve the servers from having to maintain a list of expunged UIDs indefinitely,
just in case a QRESYNC-enabled client reconnects after two years of inactivity. When
such a situation happens, a server which cannot remember expunges going so far in
history has no other option but to send a VANISHED EARLIER for all UIDs lower
than the UIDNEXT, no matter if they ever were present in the mailbox. This fallback
suggests that the QRESYNC extension could very well have a negative net effect overall,
at least in certain pathological situations — essentially when the list of expunges grows
so long that the server decides to prune some of its records.

In order to mitigate this issue, a few other options were added to QRESYNC. The
first of them is a way of indicating to the server the range of UIDs about which the

2Technically, the expunges are sent out before the information about the updated flags, but that
isn’t the point here.

22

client actually cares. The idea here is that if the client only cached a subset of messages
(for example those with UID higher than 50000), there isn’t much point in informing
the client about each and every UID which might had been in the mailbox before (like
those 49,999 of UIDs lower than 50,000).

However, chances are that this optimization is not enough to overcome the danger
of having to sync too many UIDs — and indeed, some user agents might want to
preemptively load messages both from the beginning and from the end of the mailbox
in an effort to optimize preloading. Such user agents would not be able to benefit from
the “range of known UIDs” optimization.

Fortunately, the SELECT QRESYNC command includes provisions for passing
another type of data around — it is also possible to provide a representative list of
(sequence, UID) pairs. Using technique similar to the proposed binary search when
discovering UIDs, the client can decide to send along a UID from roughly middle of the
mailbox as the first one, followed by another one located at circa 75 % of the mapping,
next one from 7

8 etc., halving the interval in each step. The concrete strategy to be
pursuit is left to the client, as it is basically a policy decision. Using more fine-grained
interval means that more data is sent along during each resynchronization without a
direct merit (i.e. when the server still remembers the previous HIGHESTMODSEQ
and can provide the client with relevant data), while on the other hand sending less
UIDs leads to minor data savings during ordinary reconnects while causing potentially
huge amounts of data to be transfered when the server is unable to use the — perhaps
very old or otherwise stale — HIGHESTMODSEQ.

The presented version of Trojitá always uses halving of sequences, effectively
transmitting log2(n) sequence-UID pairs:

Sequence knownSeq, knownUid;
int i = oldUidMap.size() / 2;
while (i < oldUidMap.size()) {

// Message sequence number is one-based, our indexes are zero-based
knownSeq.add(i + 1);
knownUid.add(oldUidMap[i]);
i += (oldUidMap.size() - i) / 2 + 1;

}

Our example synchronization (a thousand messages in a mailbox, unspecified changed
since the last time) could therefore look like this — the client has fresh enough UID
mapping up to UID 1008 (sequence number 995). The server does not remember dele-
tions so far to the past, but the passed UID mapping fragment could nevertheless be
used to optimize the delivered data:

C: SELECT foo (QRESYNC 12345 613184045007 (500,750,875,937,968,983,990,995,997
512,772,887,949,980,985,995,1002,1008,1111))
S: * 1000 EXISTS
S: * OK [UIDVALIDITY 12345] UIDs valid
S: * OK [UIDNEXT 2345] Next UID
S: * OK [HIGHESTMODSEQ 715194045007]
S: * VANISHED (EARLIER) 1009:2289,2291:2309,2313:2332,2343,2344
S: * 997 FETCH (UID 2310 MODSEQ 715194045007 FLAGS (\\Seen \\Deleted))
S: * 1000 FETCH (UID 2333 MODSEQ 715194045005 FLAGS (\\Seen))
S: y1 OK Selected

23

The received data contain enough information to reconstruct complete UID map-
ping even under these unfavorable conditions. The redundant UID information in the
FETCH responses can be also used to make sure that both sides of the connection
arrive to the same final state.

Trojitá will throw an error when it detects failure at any time.

To further reduce the amount of data transmitted during the IMAP session, the
QRESYNC extension also introduces a second kind of the VANISHED response —
the one without the EARLIER modifier. Serving as a substitute for the ordinary
EXPUNGE, the VANISHED’s biggest advantage is that it can inform about multiple
expunges in a single response. Somewhat ironically, this modification also relieves the
clients of their need to maintain a complete UID-sequence mapping at all times — but
only after providing a method of making this synchronization severely less painful in
the first place. The whole matter is a bit more complicated by the wording of the
RFC which is pretty clear on that the VANISHED responses should be sent instead of
EXPUNGE — a language which, in RFC terms, means that the servers are supposed
to do so, yet the clients are forbidden from relying on such behavior because under
special circumstances, the servers might very well have a good reason to defer back to
the EXPUNGE [31].

Unfortunately, the combination of offset-based EXISTS (which is a response used
to inform the client about growth of the number of messages in a mailbox) with UID-
based VANISHED can lead to races, a dangerous condition which I have identified [32].
The problem lies in QRESYNC’s allowance for non-existent UIDs to be included in the
VANISHED response. Consider the following scenario where the client is fully synced
with a mailbox with just a single message bearing UID 5. The mailbox’ UIDNEXT is
11:

S: * 3 EXISTS
C: x UID FETCH 11:* (FLAGS)
S: * VANISHED 12:20

The server is telling the client that any UIDs between 12 and 20 are gone. The
problem is that the client cannot possibly know whether any message has got any of
these particular UIDs, i.e. whether the messages #2 and #3 (the first and second
arrival) fall into that range. Trojitá will immediately send out a request for UIDs of
the new arrivals (that is the UID FETCH command in the previous example), but due
to the timing issues, it is perfectly possible that these messages are “long” gone (and
the appropriate VANISHED sent) by the time the server receives the UID FETCH
command. There isn’t much that a compliant IMAP client can do at this point besides
issuing an explicit command for finding out whether any new messages have actually
remained in the mailbox. This is a minor deficiency in the QRESYNC extension which
could be easily avoided by replacing the EXISTS in manner similar to how EXPUNGE
got replaced by VANISHED. The previous example would look like this one, eliminating
any possibility of races:

S: * ARRIVED 12,33
C: x UID FETCH 11:* (FLAGS)
S: * VANISHED 12:20

The ARRIVED command is defined in a proposed draft in section 4.1 on page 37.
A similar functionality could be achieved through the NOTIFY extension defined by

24

RFC 5465 [33], but supporting NOTIFY is a rather strong undertaking for an IMAP
server and — as of July 2012 — support for that extension is still rather scarce. 3

The QRESYNC extension also mandates an interesting mechanism for its activa-
tion. The SELECT . . . QRESYNC command does not work when the IMAP client
opens a mailbox for the first time — the client has no cached state, so it cannot con-
struct any of the optional arguments to the QRESYNC select modifier. Furthermore,
it cannot fabricate a proper HIGHESTMODSEQ in a safe way – using value too low
would result in needlessly sending a huge number of VANISHED EARLIER responses,
while using a too high value could confuse the server and treat the client as a buggy one.
This is why a special ENABLE QRESYNC command (from the ENABLE extension,
RFC 5161 [34]) is defined to be a QRESYNC-enabling command, activating any nec-
essary MODSEQ tracking on the server side. This requirement might be non-obvious
at first, for the SELECT . . . QRESYNC on its own should be sufficient to inform the
server that the client indeed wants to speak QRESYNC.

Unfortunately, there is also a certain murkiness about the ENABLE command —
the errata #1365 for RFC 5162 [35] proposes to add an explicit note that “(A server
MUST respond with a tagged BAD response if) (. . .) or the server has not positively
responded to that command with "ENABLED QRESYNC", in the current connection”,
even though the RFC 5161 explicitly allows for aggressive pipelining of ENABLE and
SELECT. 4 I have raised this issue on the imap-protocol mailing list and the consensus
there was that it is indeed allowed not to wait for the server’s ENABLED before issuing
a SELECT . . . QRESYNC [36]. I fully support such an outcome as it would be rather
awkward to see a requirement for extra network round trips in contemporary IMAP
extensions.

3.3 Fetching the Data
The IMAP protocol contains rather rich set of features aimed at downloading the
message data in an efficient manner; clients can defer parsing of the MIME message
parts [10] to the server and deal with the individual data separately. In spite of that,
there are a few optimization opportunities which can drastically reduce the amount of
data to be transfered.

3.3.1 The BINARY Extension

Historically, e-mail messages could only contain English text, for which a 7-bit char-
acter set and the US-ASCII encoding was adequate. However, with the advent of
“multimedia”, a steady pressure had emerged, leading to the MIME standard family.
Using MIME, complex tree-like structures can be embedded in e-mail messages and
transmitted over the Internet mail. However, at the time these were introduced, there
was a real risk of not being able to transmit such complex messages over traditional
communication channels which were often only 7-bit safe. Due to these backward com-
patibility concerns, a few standard method of converting arbitrary data to a textual
form were conceived under the name of Content-Transfer-Encoding.

3None of the widely deployed open source IMAP servers supported NOTIFY at the time this thesis
was written. The Dovecot IMAP server had an experimental branch with partial support which would
be enough to serve as a replacement for ARRIVED, but it could not be discovered through the IMAP
capabilities because NOTIFY is an all-or-nothing extension; it mandates full server support and doesn’t
include provisions for partial functionality which would have been enough in this case.

4“There are no limitations on pipelining ENABLE. For example, it is possible to send ENABLE
and then immediately SELECT, or a LOGIN immediately followed by ENABLE. [34, p. 2]

25

The two most common encoding schemes are Quoted-Printable [10, p. 18] and
Base64 [10, p. 23], the latter of which is especially suitable for converting arbitrary
binary data to a 7-bit form. However, it is clear that mapping generic 8-bit data
into 7-bit octets (and eliminating the appearance of certain “magic” characters in the
process) cannot possibly work without inflating the total size of the transferred data.
For the Base64 Content-Transfer-Encoding, the mapping converts 8-bit input (i.e. 256
values per octets) into a target alphabet of only 64 characters, imposing an overhead
of roughly 33 % compared to the raw binary form. Whenever the MIME-encoded
message is transmitted, the amount of transferred data is therefore roughly one-third
higher than strictly required.

RFC 3516 [37] adds a feature to work around this limitation through the BINARY
extension. When the server supports this feature, clients can delegate the Content-
Transfer-Encoding processing to the server and receive the raw binary data. Perhaps
surprisingly, the BINARY extension was not supported in Dovecot, one of the most
popular IMAP servers, at the time this thesis was written.

Nevertheless, Trojitá includes full support for this extension and will au-
tomatically fetch data using the appropriate FETCH modifier in order to
reduce the amount of data to send over the network.

3.3.2 Server-side Conversions via CONVERT

Certain devices might have limitations which the sender might not have expected when
she was preparing the message. For example, a screen of a cell phone could have a very
low resolution. Unless the user really wants to see the full details after zooming in eight
times, it might make sense to reduce the resolution of that 22-megapixel 5760 × 3840
image produced by Canon 5D Mk. III to fit on a 480× 800 pixels screen of a high-end
smart phone from 2012. Even if the user actually wants to see the real image, it might
be worthwhile to offer an access to a lower-resolution version for a quick preview. This
server-side conversion is what the CONVERT extension from RFC 5259 [38] enables.

Unfortunately, it appears that there are actually no publicly available servers which
offer support for server-side conversions and the most popular open source implemen-
tations have not expressed much interest when asked for their future plans.

Due to this induced inability to test this feature for interoperability, Trojitá
doesn’t support the CONVERT extension at this point.

3.3.3 Metadata Decoding

IMAP requires compliant servers to support MIME message parsing and RFC 2822
header decoding. One feature which is notably absent, though, is a support for server-
side decoding of RFC 2047-formatted message headers and IMAP’s ENVELOPE fields.
This shortcoming is partially addressed by two RFCs — the already mentioned CON-
VERT extension mandates support for character set decoding and conversions of RFC
2822 message headers while an experimental RFC 5738 [39] adds an “UTF-8” mode
which switches all FETCH commands to return the decoded Unicode data, including
the IMAP’s ENVELOPE. Sadly, support for this extension is similar to what has been
already said for the CONVERT and one can also safely claim that the possible data
savings are minuscule, if any. In addition, the UTF-8 extension changes quite a lot
of assumptions from the traditional IMAP protocol, to the extent that one could very
well propose yet another extension which would just enable access to the decoded EN-
VELOPE and RFC 2822 header data. No such extension exists at this point, though.

26

If the IMAP protocol was designed today, mandating a full-featured RFC
2047 decoder would be an obvious addition, but with the legacy of the protocol
history, a requirement to implement a client-side decoder anyway and no
available server support and the RFC being marked as experimental, Trojitá
does not try to use the SELECT . . . UTF8 parameter.

3.4 Updating Mailboxes
Previous sections have introduced the existing extensions aimed at improving mailbox
synchronization and data download. In this part, I will talk about how to optimize
access to an already selected mailbox and how to get updated information about other
mailboxes.

3.4.1 Sorting Messages

In a typical IMAP scenario, the server can access data for any message in a mailbox in a
very cheap way. This is in a strong contrast to its clients which are typically connected
over a network whose quality could leave much to be desired. It might therefore make
sense to offload the data-intensive processing to the IMAP server and only send the
results to the client.

RFC 5256 [40] adds support for server-side sorting. Using these features allows
clients to request the server to sort a subset of messages using predefined sorting criteria
like the message date, the time of its arrival, name of the sender, contents of the subject
field etc. This feature set is subsequently augmented by RFC 5957 [41] which adds
another sorting method which prefers the “real name” included in the e-mail addresses
instead of using the raw foo@example.org format. The results of the SORT operation
are transmitted in a format similar to the SEARCH response.

Trojitá includes full support for both of the mentioned RFCs.

This feature alone is a tremendous improvements over the traditional method where
clients would have to download envelope data for all messages in a mailbox and then
sort the messages based on the obtained data. However, clients have no way of reusing
the sort result when a new message arrives, mandating at least a limited support for
client-side sorting as well. This limitation is mitigated only by the CONTEXT family
of extensions which is discussed later in this chapter.

3.4.2 Threads and Conversations

RFC 5256 [40] also includes support for organizing messages into threads. The thread-
ing algorithm takes a look at various pieces of message metadata like their subjects
or the Message-Id, References and In-Reply-To headers and builds a tree of messages
where children of a particular node represent messages which were made as responses to
the parent one. This RFC specifies a few threading algorithms from almost useless one
(the ORDEREDSUBJECT which groups together messages sharing a similar subject,
effectively bundling unrelated items like generic “info”, “inquiry” etc. messages) to
almost perfect ones (the REFERENCES which works like the ORDEREDSUBJECT,
but also takes the special machine-readable headers into account). Sadly, even the
REFERENCES algorithm only sorts the threads by the time stamp of the thread root
and not by the latest message in a thread, effectively “hiding” new responses deep in
the mailbox history. It also still looks at the message subjects, potentially lumping
unrelated messages together.

27

Both of these limitations are removed by the REFS threading algorithm [42]. De-
spite being still in the draft phase, the Dovecot IMAP server includes full support for
it.

Trojitá will use it if the THREAD=REFS capability is advertised. In ab-
sence of the REFS algorithm, Trojitá degrades to REFERENCES and OR-
DEREDSUBJECT, respectively.

Unfortunately, none of these extensions addresses the need to re-download the whole
thread mapping when a new message arrives; matters are in fact even more complicated
than when sorting because a single arriving message could have a wide ranging effect
on the whole threading information. This issue is addressed by the proposed “extended
INTHREAD” described in section 4.2 on page 39.

3.4.3 Incremental Sorting and Searching

Soon after the original SORT command got standardized, it became apparent that
having to request a full update of the sort order whenever a new message arrived would
nullify some of the bandwidth saving opportunitites of performing the server-side sort.
A similar concern existed for server-side searching — here, too, the client would have
to explicitly check if the new arrivals match the search criteria. This limitation was
addressed by introduction of the so-called contexts in RFC 5267 [43].

This RFC defines three extensions, the ESORT, CONTEXT=SEARCH and CON-
TEXT=SORT. The first one is similar to the ESEARCH (and in fact reuses the ES-
EARCH response) in that it could reduce the amount of data transmitted in response
to the SORT command. The two CONTEXT=. . . capabilities extend the SEARCH
and SORT commands by a way to tell the server that it should tell the client whenever
the results are updated. An efficient way of communicating the changes through the
ADDTO and REMOVEFROM ESEARCH return values was introduced.

In absence of the search/sort contexts, a newly arriving message would typically
result in client repeating the operation. 5 This is turn leads to excess data transfers
like in the following example where a single arrival results in transferring the whole
mapping again:

C: x1 UID SORT (SUBJECT) utf-8 ALL
S: * SORT 1 2 10 5 50 20 ... [rest of UIDs goes here]
S: x1 OK sorted
...time passes...
S: * 1007 EXISTS
C: x2 UID SORT (SUBJECT) utf-8 ALL
S: * SORT 1 2 1111 10 5 50 20 ... [rest of UIDs goes here]
S: x2 OK sorted

For brevity purposes, the sort order of the other 1,000 messages has been omitted.
In presence of the CONTEXT=SORT extension, though, the same protocol interaction
would look like this one:

C: x1 UID SORT RETURN (ALL UPDATE) (SUBJECT) utf-8 ALL
S: * ESEARCH (TAG "x1") UID ALL 1:2,10,5,50,20,90:1090

5When speaking about searching, there is a pretty straightforward optimization opportunity where
the SEARCH command can be augmented to include an explicit “and the messages’ UID is higher than
the old_uidnext”. Unfortunately, no such optimization can be performed for the SORT command where
the sort order can possibly depend on each and every other message in a mailbox.

28

S: x1 OK sorted
...time passes...
S: * 1007 EXISTS
S: * ESEARCH (TAG "x1") UID ADDTO (2 1111)

Using the sort contexts therefore leads to dramatic bandwidth savings on “busy”
mailboxes which keep receiving new mail over time; the ESEARCH response can also
occasionally contribute to a reduced amount of transferred data when the UIDs were
assigned in a favorable way. The biggest contribution is, however, the introduction of
the ADDTO ESEARCH return response which obliterates the need to transfer sort
order of the whole mailbox along with the single updated item.

The search and sort contexts also impose certain, albeit abysmal overhead, though
— whenever a message is removed, an explicit ESEARCH REMOVEFROM has to be
issued. This funcitonality is mandated by the relevant RFC, even though it doesn’t
provide any extra functionality — all clients still have to listen for EXPUNGE or
VANISHED untagged responses (and rightly so, obviously), so there is no technical
obstacle in requiring them to remove the freshly removed items from their search/sort
result cache. Etiquette also dictates that clients shall cancel these updates when they
are no longer needed through the CANCELUPDATE command. These drawback are
however extremely small when working with larger mailboxes and absolutely worth the
increased benefit of not transferring the whole set of UIDs over and over again.

Trojitá includes full support for both CONTEXT=SEARCH and CON-
TEXT=SORT. The CONTEXT=SEARCH has been tested for interoper-
ability against the Dovecot IMAP server, one of the few implementations
which actually offer this functionality. Unfortunately, I was not able to
locate a single IMAP server supporting CONTEXT=SORT, so no real-
world interoperability tests could have been performed. 6 This is a rather
surprising outcome given that the RFC 5267 is not exactly a fresh standard
now and that its authors work from a commercial software vendor offering
a pretty advanced IMAP server implementation.

Sadly, no equivalent of these incremental updates is defined for the THREAD com-
mand. I suspect that this is caused by the fact that a single new arrival can affect each
and every message in the previously received thread mapping. I have attempted to ad-
dress this limitation by augmenting the SEARCH=INTHREAD draft, see section 4.2
on page 39 for details about the selected approach.

3.4.4 Advanced Searching

Although the basic IMAP specification provides quite a rich set of features aimed at
searching the currently selected mailbox, the specification leaves quite a fertile ground
for improvements.

The biggest problem with IMAP’s searching is that it requires a strict substring
matching, a requirement which is openly ignored by at least Google’s IMAP imple-
mentation [44]. Google’s partial answer to this problem is at least an ability to issue
“raw” GMail-like searches through the X-GM-RAW SEARCH operator [45]. Others
have tried to add a similar feature through the SEARCH=FUZZY extension as defined
in RFC 6203 [46].

6As any other feature of Trojitá, though, the support for CONTEXT=SORT is covered by the
automated test suite which was carefully written to minimize the chance of any unwanted side effects
and guard against unintended results when the servers deviate from the expected behavior.

29

Trojitá makes use of the fuzzy searching if available and announced in the ca-
pability response. There were also some experimental extensions [47] aimed
at introducing search based on regular expressions, but they have not gained
much traction.

A long-missing feature from IMAP is an ability to search multiple mailboxes at
once. A very crude hack is the (unofficial) SCAN extension [48] which is said to be
private to the University of Washington’s uw-imapd daemon. More recent attempt at
tackling down this problem is the MULTISEARCH extension [49] built on top of the
NOTIFY [33]. As of July 2012, no publicly available IMAP servers have announced
support for this extension.

3.4.5 Obtaining Statistics for Other Mailboxes

Many IMAP clients start their session by requesting a LIST of all top-level mailboxes.
This command is then followed by a STATUS for each of them in order to obtain
information like the number of messages in each mailbox. The obtained information is
typically used in a GUI of some kind to show the mailbox list to the user.

The basic IMAP specification unfortunately doesn’t convey the critical piece of
information about whether a mailbox contains any child mailboxes — a data point
typically required by any GUI to be able to show a proper widget for opening a list of
these child items. In absence of the CHILDREN extensions, as defined by RFC 3348
[50], clients have no choice but to issue an explicit LIST command for all mailboxes, 7

trying to list their children.
The CHILDREN is a pretty straightforward extension which shall arguably be

supported by any IMAP server worth its salt; its absence does not improve the situation
in any way.

Trojitá supports it fully and will gracefully fall back to extra LIST requests
in case it is not available.

The initial discovery of mailboxes also mandates a separate STATUS command for
each mailbox — behavior which arguably goes against the spirit behind that command
which was intended to not serve as a generic “tell me about updates to other mailboxes”
feature. This initial idea no longer has its merit, unfortunately — users simply expect
being able to see a number of unread messages right next to the mailbox name, and
client authors have to deliver this information to them. Having to send an extra STA-
TUS command for each mailbox during the initial discovery is not too evil thing per se
(the total wasted bandwidth is negligible when compared to mailbox synchronization),
but worth optimizing anyway. RFC 5819 [51] adds an option to the LIST command to
request automatic sending of the untagged STATUS command along.

When the IMAP server announces the LIST-STATUS capability, Trojitá
will automatically make use of this extension.

3.4.6 Push-notification of Other Mailboxes’ State

A feature most notably absent from the IDLE is any support of passively monitoring
changes of non-selected mailboxes. Over the time, many extensions have appeared in
the state of various drafts [52] [53] [54], often simply requesting unsolicited delivery of

7The only exception being those marked with the \NoInferiors which is meant to indicate that this
mailbox could never contain any child mailboxes, perhaps due to technical limitations on the server
side — a very different case from not containing any child mailboxes at this time.

30

STATUS and FETCH responses. None of these extensions gained widespread support
nor reached the state of a proposed standard, though.

Said status was reached by the NOTIFY extension codified in RFC 5465 [33]. It
adds an impressive amount of features; compliant agents can listen for creation and
deletion of mailboxes (eliminating the need to redo a top-to-bottom LIST discovery),
changes in amount of messages in specified list of mailboxes and even for their flag
changes. Sadly, support for this extension is scarce among the existing IMAP servers
and its author reportedly has mixed feelings [55] about its fate where basically “noone
implements it”. In early 2012, a posting on the Dovecot mailing list announced [56]
preliminary support for a part of this extension in Dovecot, one of the most widely
deployed open source IMAP daemons. Unfortunately, this code was not complete as
of July 2012 [57] and the branch I have tried contained regressions which prevented
regular use of other features of the IMAP server altogether. 8

Due to not being able to verify the NOTIFY operation against any available
IMAP server implementation, Trojitá will not try to leverage this extension
for the time being.

3.5 Composing and Delivering Mail
The baseline versions of the IMAP protocol does not offer any substantial assistance in
composing and delivery of new messages — the only feature even remotely related to
this topic is the APPEND command which saves a message passed by the client into a
mailbox. Over the time, several extensions appeared aiming at improving this area.

The first extension is the MULTIAPPEND command (RFC 3502 [58]) which allows
the client to atomically upload many messages at once. Having such a feature could be
a terrific boon in clients which support batched import of data from the existing mail
store, but it is not so valuable in a generic client.

If Trojitá grows and a support for batched import becomes a wanted feature,
the MULTIAPPEND command will doubtlessly contribute to a smoother
experience.

Much more useful is the CATENATE extension [59] which allows clients to build
a message from a combination of uploaded parts and data already available on the
IMAP server. This extension is crucial for implementing advanced forward-without-
download feature. Suppose a user who is currently on her vacation high above some
Nordic fjord, accessing e-mail over a metered GPRS connection, has just received a
huge e-mail consisting of a big binary attachment. IMAP already has a feature which
allows her to check the accompanying text without downloading the full message body.
What is missing is some kind of support of forwarding the original message to another
recipient.

This task consists of several steps — first of all, the body of the resulting message
to be sent has to be composed. The CATENATE extension tremendously helps with
this task. Using CATENATE, a client can compose a message consisting of a mixture
of data, some of which is coming from the client over the network as raw literals, others
being recycled from server-side data, be it full messages, arbitrary message parts or even
byte-sized chunks of these. After the message composing is concluded, the message shall

8This is not to say that the Dovecot is a bad IMAP daemon — not at all. The version which was
used is a development snapshot which is clearly marked as an experimental version which requires
future work.

31

be submitted to an MTA 9, typically over the SMTP protocol [60]. Finally, a copy of
the message shall be stored in the user’s “sent” folder for future reference.

Trojitá will make use of the CATENATE extension when available.

It can be seen that in absence of specialized extensions, this an interaction could
possibly involve up to three transfers of the huge binary data, possibly in an ineffi-
cient transport encoding, over the unreliable or expensive network connection. Clearly,
there’s a huge room for improvements. The CATENATE extension assists in a server-
side IMAP message assembly, but does not provide a way of improving actual message
submission.

The first possible way of improving relies on a whole family of extensions concerning
both SMTP and IMAP. The SMTP protocol is extended by the BURL command [61]
while the IMAP server has to support the URLAUTH extension [62] and both daemons
have to be properly configured. Using this protocol combination (which itself depends
on quite a few more extensions, please see the respective RFC documents for details),
the IMAP client can generate a single-use authorization token which — if used —
enables its holder to access the given message part. This token is then passed to the
SMTP daemon which will combine data obtained directly from the MUA10 (like the
accompanying text) with the data downloaded from the IMAP server via the passed
authorization token, build a MIME message and take care of its further delivery through
the usual means. As was already mentioned, if the IMAP server also supports the
CATENATE extension, the client can build the message on the server at once from the
mentioned fragments (the new accompanying text and the attachment from the original
message) and pass this newly-formed message for submission through the BURL SMTP
extension. This has a potential of eliminating the need to transfer the data to/from
the client at all, leading to a drastic bandwidth reduction.

Trojitá includes full support for the BURL and URLAUTH extensions. Due
to the interoperability troubles with misconfigured servers which were ob-
served in real world [63], making use of BURL has to be explicitly allowed
in the settings dialog of the application.

Unfortunately, such mode of operation comes at a cost. Support for the required
extensions is not ubiquitous among the deployed servers and even if the code contains
all required features, it is often a policy decision whether an IMAP server should ever
allow access to possibly privacy-sensitive data to the outbound MTAs.

Another possibility presenting slightly different set of features, advantages and dis-
advantages is implemented by deferring the actual message submission to the IMAP
server as well. The CATENATE extension is still useful because it shall nonetheless
be used to build the MIME message body from existing parts, eliminating the need to
upload the data to the IMAP server. When the message body is built (no matter how,
using CATENATE or deferring to legacy means), the IMAP server can be asked to
submit the resulting data for delivery.

This former approach has been traditionally dismissed by many IMAP proponents,
including Mark Crispin, on various grounds. The most common complaint is that the
SMTP protocol is extremely mature, widely deployed and also complex — and that
this inherent complexity is required by various use cases crucial for proper operation
of today’s Internet mail. The critics often argue that covering the whole feature set

9Mail Transfer Agent
10Mail User Agent, i.e. the program which acts on the user’s behalf in accessing and submitting the

Internet mail

32

of the (E)SMTP-based submission would lead only to an equivalent of tunneling the
SMTP session over IMAP [64] [65], an outcome which is clearly not desirable. This
approach was also subject to various standardization efforts, often literally tunneling
the (E)SMTP conversations [66, p. 30] over an IMAP connection. Proponents of this
submit-over-IMAP approach, however, counter-argument by stating that optimizing
for a common use case has its own merits [67]. The critics concur that having two ways
of obtaining an identical result is suboptimal and that an easier, yet more limited way
would threaten the existence of the older, more flexible solution [68].

Finally, a third way of solving the forward-without-download problem was presented
in September 2010 through the POSTADDRESS extension [69]. Using this mechanism,
a client first obtains a valid e-mail address serving as a “delivery address” for the user’s
Sent mailbox. After getting hold of that information, the SMTP session then proceeds
as usual with one difference — the obtained address is added as another recipient of
the submitted e-mail message.

Besides including full support for the already mentioned “Lemonade trio”
of extension (CATENATE, URLAUTH and BURL, Trojitá also includes
experimental support for the second approach of forward-without-download,
the submission-over-IMAP variant.

Mail submission is an important topic, so I have dedicated a full section to a more
detailed analysis of various advantages and disadvantages of competing approaches.
More information is available in section (section 4.3 on page 41) where I present my
Internet-Draft documenting a proposed extension in which I’ve tried to address many
concerns raised during the previous discussion rounds.

3.6 Further Improvements
Many additional extensions have been defined over years, covering various areas of the
protocol. This section deals with those extensions which do not quite fit into any of
the previous categories.

3.6.1 Debugging

Most of other communication protocols contain a way of letting the other party know
what software implementation and in which version it is talking to. In the web, this
is usually accomplished through the User-Agent and Server headers, e-mail messages
often contain either an X-Mailer or User-Agent field in theirs RFC 2822 headers, etc.
IMAP adds a similar feature through the ID extension defined in RFC 2971 [70].

This RFC is pretty clear on that implementations are explicitly forbidden from us-
ing any knowledge obtained through the ID extension to alter their behavior. This is a
reasonable decision intended to prevent clients implementing blacklists and whitelists
of “known” servers. All IMAP protocol speakers are intended to only use the CAPA-
BILITY responses (and the ENABLE extension, if present) to change their behavior.

Trojitá is fully compliant with these requirements.

3.6.2 Internationalization

The “internationalization” RFC (RFC 5255 [71]) is focused on server implementations,
mainly specifying how to perform search/sort collation under various circumstances.
That said, it also presents two commands to the IMAP clients. The first of them is the

33

LANGUAGE command suitable for changing the language in which various error and
notifying messages are generated and sent by the server.

Trojitá tries hard to rely on machine-readable response codes (RFC 5530
[72]) instead.

The second command is the COMPARATOR, a feature intended to let clients
specify which comparators and collators to use when performing search or sort op-
erations (these comparators are defined in RFC 4790 [73]). By default, servers sup-
porting at least the I18NLEVEL=1 extension are required to perform collations us-
ing the i;unicode-casemap comparator [74] — a feature which is very useful (and
often sufficient) in countries using the Latin alphabet. Those servers which support
I18NLEVEL=2 also accept client-specified preference about how to perform these op-
erations.

Adding support for this higher level would be trivial on a technical front
(the LANGUAGE and COMPARATOR commands are very simple with
much more demanding requirements on servers), but no requests for such a
feature in Trojitá were received yet — suggesting that the i;unicode-casemap
comparator works well for most users at this point.

There is also the experimental “UTF-8” RFC [39] whose aim is to get rid of any non-
UTF8 data being transferred over IMAP. Unfortunately, as designed, this document
presents backward-incompatible changes to the IMAP protocol and is hence not widely
supported by the common server implementations. The client authors would very much
prefer to stop dealing with various Unicode encoding schemes, but this RFC does not
completely address all of the issues. An ongoing discussion is nevertheless taking place
on official IETF’s channels; it will be promising to watch its future and especially the
fate of the “5738bis” Internet Draft [75].

It shall be noted that Trojitá’s source is completely ready for international-
ization and localisation of the application. 11

3.6.3 Other Supported RFCs

Trojitá is fully conforming to the description of the “Distributed Electronic Mail Models
in IMAP4”, as defined in RFC 1733 [77]. It also respect the recommendations about
concurrent access to mailboxes from RFC 2180 [78], generic suggestions to the IMAP
implementors (RFC 2683 [79]), Mark Crispin’s famous “Ten Commandments of How
to Write an IMAP client” [80] and Timo Sirainen’s suggestions for client authors [81]
[82].

It will make use of the UNSELECT command for internal technical reasons (RFC
3691 [83]), if available; if it isn’t present, it will gracefully revert to using fabricated
mailbox names with the EXAMINE command from the baseline IMAP specification.
This failover is thoroughly verified by a suite of automated unit tests.

Trojitá is capable of recording responses from the UIDPLUS extension (RFC 4315
[84]); the author have also contributed [85] to the discussion related to the COPYUID
equivalent for the proposed UID MOVE command.

11This support does not come at no cost, unfortunately. Qt’s QDateTime class which is used for
keeping track of the date and time information in all Qt-using projects unfortunately does not support
tracking of timezone information [76]. Trojitá works around this limitation of the public API by manual
hack in Imap::Mailbox::formatDateTimeWithTimeZoneAtEnd() method.

34

The code also includes full support for recognizing various extensions to the IMAP’s
grammar (RFC 4466 [86]), response codes (RFC 5530 [72]) and the reserved set of
keywords (RFC 5788 [87]).

RFC 5258 [88] is used when available to explicitly encourage the IMAP server to
send additional metadata in LIST responses — the biggest benefit of this extension is
eliminating the need of sending explicit LSUB requests to discover mailbox subscrip-
tions.

Finally, the Lemonade extension (RFC 5550 [89] and the obsolete RFC 4550 [90]) has
compiled a set of requirements crucial to the mobile IMAP e-mail clients. Comparison
of the proposed set of extensions with the Lemonade profile is presented in a dedicated
section of this thesis on page 46.

3.6.4 Out-of-scope Features

The extensions presented so far all have a certain affinity towards the “mobile IMAP”.
Many other extensions have been introduced, though, often solving a real problem.

The first family of extensions with debatable merit are extensions providing support
for so-called referrals. The RFC 2221 [91] adds a mechanism for servers to redirect
clients based on their identity, a feature which was originally supposed to come handy
in large corporate environment. Similar to that, the RFC 2193 [92] adds mailbox
referrals, a feature where a subset of user’s mailboxes might be stored on a remote
server. As it happens, these features have not attained a big market share among client
developers [93] and the servers which supports that are generally willing to act as a
transparent proxy for their clients anyway [94].

Extensions which are useful in a general-purpose e-mail client are the NAMES-
PACE extension (RFC 2342 [95]) which would allow compliant clients to automatically
discover where e.g. other users’ mailboxes are located, support for managing access-
control lists (ACLs) on the server (RFC 4314 [96] and its obsolete form given in RFC
2086 [97]) and finally support for reporting and managing storage quotas (RFC 2087
[98]).

These have not been implemented in Trojitá yet.

A mechanism for increasing interoperability with organizations which have invested
in a single-sign-on infrastructure like Kerberos could be improved through better sup-
port for SASL (RFC 1731 [99], RFC4959 [100]).

A request from users which would very much prefer to have a GSSAPI-
enabled Trojitá was already received, but unfortunately this feature remains
unimplemented due to time constraints.

A few extensions might improve the general comfort of users setting up their e-mail
clients for the first time. Without any doubt, autoconfiguration through the DNS SRV
records (RFC 6186 [101]) falls into this category.

There are also certain features which might add a whole new level of functionality
to working with e-mail – examples are the ANNOTATE extension (RFC 5257 [102]) for
adding arbitrary annotations to individual messages or even their parts, which is still
marked as experimental, or the similar METADATA feature (RFC 5464 [103]) adding
the same functionality on a server or mailbox level. Needless to say, support for these
extensions is scarce among the IMAP clients.

Other extensions try to fill a certain niche. Examples are the WITHIN extension
(RFC 5032 [104]) which allows clients to search among messages of a certain age or the
SEARCHRES (RFC 5182 [105]) adding a low-level pipelining optimization which would

35

allow the client to re-use the previous search result in the subsequent commands. RFC
5466 [106] adds support for persistent storage of search criteria on the server through
the already mentioned METADATA extension.

I have not found a use case for having these optional extensions utilized
from Trojitá in any place.

The RFC 3503 [107] deals with how to generate the message delivery notifications
(MDNs) in IMAP.

This document clearly does not apply to clients which on purpose do not
create MDNs for privacy reasons, such as Trojitá.

Finally, certain extensions improve the user experience in specialized environments.
One of them is RFC 5616 [108], an extension aimed at “Streaming Internet Messaging
Attachments”. One could imagine a use case where a carrier-level voice mailbox was
implemented over IMAP; in similar situations, such a solution would have its merit.
At the same time, this specific extension has so special requirements on the network
architecture that it is clearly out-of-scope for a general-purpose e-mail client merely
running on a cell phone.

3.7 Obsolete Extensions
IMAP is a rather old protocol (its history is slightly older than the author of this thesis,
for that matter). Certain features have been therefore deprecated over time and it took
years to grow to the current IMAP4rev1 version from the old standards of IMAP2 [109]
[110], IMAP3 [111] and IMAP4 [112]. Attention has been paid to make this transition
as smooth as possible through various compatibility recommendations [113] [114] [115]
[116].

Trojitá requires the server to at least announce the IMAP4rev1 capability.
This protocol revision is currently defined by RFC 3501 [2] from March 2003;
however, changes since the previous version from December 1996 ([114])
are mostly backward compatible — and in practice, no report of Trojitá not
being able to work against any IMAP server implementation out there were
received.

The UIDPLUS extension got redefined from its former shape [117] to the current
revision [84]; the new document states that the reason for this revision was to prevent
sending of bogus UID replies when the target mailbox did not support persistent UIDs.

As such, Trojitá can deal with both revision of the UIDPLUS document.

36

Chapter 4

Proposed Extensions

Previous chapters have shed some light on the complicated world of IMAP and showed
how the protocol limitations affects the users’ experience. I have also introduced some
of the existing extensions which aim to address many of the presented shortcomings.
There are still quite a few issues which make lives of the client implementors harder
than necessary, though. At this point, I present three separate extensions which fix
race conditions, improve the effectiveness of the protocol or add new features which
contribute to smoother operation of the e-mail clients. This broad range of changes
was selected to illustrate that improving IMAP can happen on many different fronts
and that even after more than twenty years of “active service”, the protocol can be
actively improved to address newly emerging trends.

Internet Drafts are usually prepared in a special system [118] which handles the
required strict document formatting using plain ASCII text. This chapter is therefore
purposely very short, providing only the minimal descriptions of the proposed exten-
sions. The Internet Drafts themselves are included in Appendix A on page 64 and are
an integral part of this thesis.

4.1 Announcing the UIDs of Newly Arriving Messages
during the QRESYNC mode: the ARRIVED Exten-
sion

The first extension I have implemented addresses a race condition in the QRESYNC
extension [30]. In QRESYNC, the offset-based EXPUNGE responses known from
the baseline IMAP protocol are replaced by VANISHED responses which use UIDs.
Unfortunately, because the EXISTS still informs about the number of new deliveries
only, without including the UIDs, and due to the fact that the IMAP server is explicitly
allowed 1 to include non-existing UIDs in the VANISHED responses, a race condition
exists where client does not know about the full span of the sequence→ UID mapping,

1“Note that a VANISHED response caused by EXPUNGE, UID EXPUNGE, or messages expunged
in other connections SHOULD only contain UIDs for messages expunged since the last VANISHED/-
EXPUNGE response sent for the currently opened mailbox or since the mailbox was opened. That is,
servers SHOULD NOT send UIDs for previously expunged messages, unless explicitly requested to do
so by the UID FETCH (VANISHED) command.”
“Note that client implementors must take care to properly decrement the number of messages in

the mailbox even if a server violates this last SHOULD or repeats the same UID multiple times in
the returned UID set. In general, this means that a client using this extension should either avoid
using message numbers entirely, or have a complete mapping of UIDs to message sequence numbers
for the selected mailbox.” [30, p. 12] — in the RFC language, SHOULD means that implementations
are suggested to use the recommended behavior, but can deviate from that as “there may exist valid
reasons in particular circumstances to ignore a particular item” [119].

37

which in turn violates RFC 5162’s requirement on clients having “a complete mapping
of UIDs to message sequence numbers for the selected mailbox”.

The proposed extension addresses this issue through the ARRIVED response which
informs the clients about the UIDs of new message arrivals. At the same time, it
improves the protocol efficiency by freeing the clients from a requirement to explicitly
ask for message UIDs when a new message is delivered.

This is how a typical session without the ARRIVED extension looks like. Suppose
the mailbox previously contained just a single message with UID 5, the UIDNEXT is
11:

S: * 3 EXISTS
S: * 2 FETCH (FLAGS (foo))
S: * 3 FETCH (FLAGS (bar))
S: * VANISHED 12:20
C: x UID SEARCH UID 11:*
S: * SEARCH 21
S: x OK Search completed
C: y UID FETCH 21 (FLAGS)
S: * 2 FETCH (UID 21 FLAGS (foo))

The client had no chance but to ignore the unsolicited FETCH responses, recover
the full UID mapping through the UID SEARCH command and finally re-request the
flag data once again through the UID FETCH command.

In contrast to the above, the following is how the same session happens when
QRESYNC is active and enabled:

S: ARRIVED 21
S: VANISHED 12:20
S: * 2 FETCH (FLAGS (foo))
S: * 3 FETCH (FLAGS (bar))

No client activity at all is required then the ARRIVED extension is available.

4.1.1 Alternatives

In absence of the ARRIVED extension, clients are required to perform an explicit UID
rediscovery, possibly through the UID SEARCH formerUidNext:*; this could pose
a problem when servers send any data using the FETCH responses without the UID
field. Always including the UID in unsolicited FETCH responses, as recommended
in RFC 5162’s errata document, can mitigate this particular issue. However, servers
which already do not send non-existing UIDs in the VANISHED responses will still
benefit from implementing the ARRIVED extension as the clients will be able to refrain
from performing an explicit UID SEARCH operations on them upon new deliveries.
Furthermore, due to the fact that clients have no way of finding out whether servers
include the non-existing UIDs in VANISHED responses, the benefits of the proposed
extension are demonstrated whenever new arrivals are expunged before their UIDs
become known, no matter whether the servers conform to the requirement imposed by
the relevant errata.

Full text of the proposed extension in the format of an Internet-Draft suitable for
IETF submission is included in section section A.1 on page 64. This extension was
presented for discussion on the imap-protocol mailing list [120].

38

4.2 Improving Incremental Threading through Modified
INTHREAD

Delegating message threading to the server-side can provide clients with enormous
benefits, especially when working with large mailboxes. However, these benefits can be
significantly reduced when clients are forced to request full thread mapping over and
over again.

Unfortunately, that is exactly the situation when new messages arrive. When clients
use the server-side threading, they by design do not have to keep track of the Message-
Id, References and In-Reply-To headers as the thread tree building is all done by
the IMAP server. However, that also means that newly arriving messages cannot be
easily “plugged” into the already known tree, even if full header set of the new arrival
was known. Doing so reliably would require knowledge of the relevant headers of all
messages in mailbox, knowledge which is rather expensive to obtain and avoidance of
which is the whole point of server-side threading.

4.2.1 Existing Approach

Extensions exist solving this problem for both searching (the CONTEXT=SEARCH
extension from RFC 5267 [43] which is reasonably wide-deployed) and sorting (the
CONTEXT=SORT, support of which is extremely scarce despite being defined in the
same RFC document), but no such proposal was ever submitted for threading. I suspect
that the reason is inherent in the way the threading works — a single newly arriving
message can indeed cause threading updates for any other message in a mailbox, even
for all of them in a pathological case. 2 This is in a strong contrast to live updates
of search results where a pair of simple “add item X to result” and “remove X from
the result” is enough, or even to incremental sort order communication (where the
operation is complicated a little more, requiring “add item X to the result at offset
Y ”).

One could attempt to try the incremental threading by asking for UIDs of messages
with theMessage-Id header matching any referenced from the new arrivals’ References,
but doing so is hard in practice as some MUAs choose not to use References and set
just the In-Reply-To header. Thread building exclusively through the In-Reply-To,
however, completely misses the correct thread order for threads with “gaps” in them,
a scenario very common when one’s own replies are located in a dedicated Sent folder
with the rest of the thread in e.g. the INBOX. Using just the basic SEARCH command
is therefore not sufficient.

An existing draft proposal [42] extends the search query capabilities with the
INTHREAD operator matching a whole thread of messages. This capability alone
is not enough to fully accommodate the whole incremental threading problem, but it
is an improvement good enough to build upon. The only missing piece of functionality
is being able to tell where the new thread shall be positioned, but in absence of better
tools, an approximation always showing threads with “new arrivals” at the very end of
the view might be good enough. 3

2Any new arrival could possibly join many existing threads previously considered to be individual
and independent of each other to a single thread having all of them as subthreads.

3Displaying threads with “new arrivals” among the “last messages” is suboptimal because the newly
arriving message could be in fact a result of a copy operation. Having these “older” messages suddenly
appear should not interleave them with the recent content of the mailbox.

39

4.2.2 The INCTHREAD Extension

The proposed extension builds on top of INTHREAD, adding the exact positioning
to each individual thread matching the search criteria. In addition, the format of the
response does not use the THREAD untagged response from RFC 5256 [40], but instead
uses the extensible ESEARCH response from RFC 4731 [25] — the ESEARCH already
contains provisions for returning multiple types of data and as an added bonus ties the
response to a particular command’s tag, making it possible to parallelize threading
operation. These reasons make the ESEARCH response better suited to accommodate
the new result format.

The improvement, as measured in decreased bandwidth consumption, is not always
as impressive as those from the CONTEXT extensions. It is conceivable that more
advanced forms of conveying the modified threading information (e.g. the strictly
incremental responses about how an update affects a particular branch in the threading
tree) would result in smaller overall transmitted octet counts, but on the other hand
implementing such an extension would prove challenging to both servers and clients.
There are also circumstances under which the tree-oriented differential updates would
not work; the most obvious one is when a client reconnected to a mailbox, detected
a couple of new arrivals and now wants to ask for updates “ex post”, long after they
have physically happened in the mailbox. Finally, the client-driven mode of operation
through the proposed extension better fits the IMAP behavior where clients specify in
what kinds of information they are interested and servers optimize their operation by
only transmitting what is strictly necessary.

Using the proposed extension, a typical communication between two compliant
IMAP protocol speakers might look like the following:

S: * 666 EXISTS
C: x1 UID FETCH 665:* (FLAGS)
S: * 666 FETCH (UID 1666 FLAGS ())
S: x1 OK fetched
C: x2 UID THREAD RETURN (INCTHREAD) REFS utf-8

INTHREAD REFS 666
S: * ESEARCH (TAG "x2") UID INCTHREAD 400

(600 601 (640 666)(602 603))
S: x2 OK sent

At first, the server informs the client about new delivery. Client responds with a
request for UID and message flags of the new arrivals. When both are known, the new
form of the UID THREAD command is issued, specifying that the threading algorithm
REFS shall be used, searching shall be done in the utf-8 character set and that the
returned value shall include the relative thread position among other threads in the
whole mailbox.

The result instructs the client that messages with UIDs of 600, 601, 602, 603 and
640 shall be removed from their previous positions in the threading tree, and that they
together with UID 666 form a new thread with the specified shape. This new thread
immediately follows a thread whose thread root has UID 400. Figure 4.2.2 shows how
the new threading for this mailbox looks like.

Even though the updated extended THREAD command can still send data which
are already known by the client, the design is a reasonable compromise between one
imposing overly complex requirements on both clients and servers on one hand, and
needlessly transmitting the whole mapping over and over again in absence of any ex-
tensions.

40

. . .
. Preceding threads are skipped
400No information about the rest of this thread is transmitted

. . .
600On the other hand, the whole of the new thread is always sent

601
640

666 .This is the newly arrived message
602

603
. .The following threads are also skipped

Figure 4.1: The incremental threading response conveyed information about one mes-
sage thread in a mailbox. No data for other threads have to be transmitted, leading
to a significant performance improvements on slow networks or bandwidth-constrained
devices.

The full text of the proposed extension, including the formal grammar, is available
from section section A.2 on page 72. The extension was presented for expert review on
the imapext mailing list [121].

4.3 Submitting Internet Mail — the SENDMAIL Exten-
sion

Message submission is one of the controversial subjects, along the “imap5” and “move
messages” discussions — whenever any of these topics is brought up on the imap-
protocol mailing list, an interesting discussion is guaranteed to happen. In this proposal,
I have tried to accommodate criticism from many previous review rounds.

The baseline IMAP protocol does not offer any way of e-mail submission. Mail User
Agents willing to send mail are supposed to use the (E)SMTP protocol [122] [123],
preferably over a dedicated submission service [60]. This is how most of contemporary
e-mail clients (at least those using the IETF standards in contrast to the proprietary
ones) work, but it also brings along a set of issues.

First of all, the clients have to be properly configured. Given that ESMTP and IMAP
can be (and often are) managed separately, clients have to ask their users for two sets of
accounts, one for each type of service. Proposals exist trying to eliminate much of this
complexity, especially through the DNS system [101] or via non-standard mechanisms
like those proposed by Mozilla [124] — but as usual, these mechanisms often cover
only a subset of service providers. Client programmers are required to implement and
test full support for both protocols. IMAP is doubtlessly the more complicated one,
exceeding ESMTP both in syntax and semantic, yet adding a requirement for a proper
SMTP implementation causes a measurable burden on the developers.

Furthermore, network firewalls and other filters along the way have to be properly
configured to allow for a reliable pass-through for both services [125]. Even though the
situation has much improved with a dedicated “Submission” service [60] which moved
the e-mail submission to a dedicated port to not interfere with the traditional SPAM-
laden TCP port 25, there are still certain situations where customers cannot use both

41

e-mail services, leading to confused support calls [126] [127].
In addition to the above, many users wants to store their outgoing e-mail in a

separate IMAP mail folder. This means that under typical circumstances, a message
being sent has to be uploaded twice over the network, once for IMAP, the second time
for ESMTP delivery. In case when a message contains an attachment previously already
available on the IMAP server, the same data can in fact travel over the network three
times – at first when being downloaded by the IMAP client only to be subsequently
sent after the proper MIME encapsulation to the destined “Sent” folder, and finally
over SMTP as usual. As a last point in this quick list, even in presence of specific
extensions, the time required to actually establish a separate connection, setup proper
TLS confidentiality and start tunnelling data over it is often non-negligible.

All of the above suggests that there are certain benefits in choosing to deliver e-mail
messages from MUAs 4 over IMAP.

4.3.1 Competing Proposals

Over the years, many proposals have appeared trying to accommodate this issue [128].

The “Lemonade Trio”

The most widely deployed mechanism aiming at bandwidth reduction is the Lemonade
extension family [89]. Through the use of IMAP’s CATENATE [59] and URLAUTH
[62] along with SMTP’s BURL [61], conforming clients can:

• compose a message on the IMAP server’s side, reusing any existing data,

• deliver that message over SMTP without having to upload the data.

At the same time, this approach has the following disadvantages:

• a trust relation (at least a limited one) has to exist between the SMTP and IMAP
servers,

• both SMTP and IMAP servers have to be properly configured,

• clients still have to maintain a separate SMTP protocol stack,

• an extra connection has to be opened.

Trojitá includes full support for these extensions. However, because there is no way
of discovering whether the IMAP and SMTP daemons “trust” each other, 5 Trojitá
requires the user to explicitly enable a checkbox in the settings dialog to activate
these features. 6 Using this explicit confirmation is intended to deter bugs like those
which have plagued other MUA implementations [63] from affecting Trojitá. This
implementation might change in future.

4Mail User Agents
5The mere presence of the URLAUTH capability on the IMAP server side and the advertised BURL

extension by the ESMTP service does not imply that an eventual submission will succeed.
6The CATENATE extension is not subject to this limitation; it will be used whenever the server

announces its presence, unless the user has explicitly forbidden its usage. This is equivalent to how
Trojitá handles any other IMAP extension.

42

Tunneling SMTP inside IMAP

A second approach in which the IETF community and related researchers have tried to
tackle down the e-mail submission was via actually tunneling the real ESMTP session
through the IMAP protocol [66, p. 30]. This approach removes the burden of estab-
lishing a second connection, but retains the required complexity of having to ship and
test a full ESMTP client stack. This approach is by definition as flexible as any future
ESMTP extension and does not require any changes on the (ESMTP) server side (be-
sides support for SMTP pipelining [129]), with only a limited amount of modifications
for the IMAP clients. On the other hand, the requirement to tunnel a second protocol
through IMAP adds a lot of complexity to their interaction and it appears that either
the IMAP daemon or the SMTP server has to include support for BURL nonetheless.
One has to wonder if the ESMTP serialization, no matter how useful when speaking
ESMTP, can be replaced with something terser. Consider the following example from
the proposed draft:

C: a004 XDELIVER CAPABILITY
S: * XDELIVER CAPABILITY (8BITMIME EXPN HELP)
C: a005 XDELIVER TEXT {123+}
C: EHLO
C: MAIL FROM: john@smith.com
C: RCPT TO: mooch@owatagu.siam.edu
C: DATA
C: URL /Inbox;UIDVALIDITY=9999/;UID=33;Section=BODY
.
S: * XDELIVER {321}
S: 220 mail.metastructure.net ESMTP
S: 250-mail.metastructure.net
S: 250-AUTH LOGIN CRAM-MD5 PLAIN
S: 250-AUTH=LOGIN CRAM-MD5 PLAIN
S: 250-PIPELINING
S: 250 8BITMIME
S: 250 ok
S: 250 ok
S: 354 go ahead
S: 250 ok 1126337586 qp 28229

This communication is indeed rather verbose. The same result is achieved in a
clearer way through the UID SUBMIT command I propose later in this chapter.

No known deployments of these drafts exist and no further standardization process
has been observed on the relevant mailing lists.

The POSTADDRESS Draft

For the sake of completeness, one should also mention the POSTADDRESS draft [69].
This extension tried to provide a way for servers to announce an Internet e-mail address
for each mailbox which could act as the “Sent” folder. The idea behind this proposal
was that clients should obtain this e-mail address and include it in the Bcc field of the
outgoing e-mail messages. Doing so would facilitate the same result as the APPEND
command, but without having to send the data explicitly. Drawbacks of this method
included privacy concerns and the fact that this extension might not work with Sieve
or other server-side filtering [130]. As of July 2012, this idea appears to have been
abandoned for good.

43

4.3.2 The SENDMAIL Extension

In mid 2011, a few requests for e-mail submission over IMAP have appeared on the
imap5 mailing list [131] (with the expected outcome of calling names [132]). The idea
presented by proponents of the “submit mail over IMAP” camp appeared to be that:

• Using two protocols “for e-mail” is a significant source of support requests for
large service providers.

• The IETF-approved approach to the “forward-without-download”, i.e. the URL-
AUTH and BURL extensions, are not widely deployed. They are also notoriously
hard to implement and deploy for server vendors and system integrators.

• Extending IMAP to allow for message submission simplifies the number of au-
thorization channels.

• Handling the “common case” in an efficient manner outweighs the drawback of
enabling a second e-mail submission protocol.

Based on the said discussion, it appears that there is a strong demand for having
“such a feature” in IMAP. I’ve therefore read through various mailing list archives,
studied previous iterations of the discussion and tried to address many issues which
were previously considered to be a blocking issue (like the apparent need to rewrite
message bodies when dealing with blind-carbon-copies (the Bcc headers), having to
scan message contents unconditionally, or a lack of delivery status notification (DSN)
control). The extension which I propose as a part of this thesis has the following
advantages:

• It removes the need for clients to speak both ESMTP and IMAP protocols.

• It reduces the amount of account details to ask users for.

• Whole communication is performed over a single connection, eliminating a sig-
nificant cause of support requests.

• All features can be implemented as a thin wrapper over a sendmail-compatible
binary which is nowadays shipped by most MTAs.

• Messages can be submitted using a single round trip once stored on the server.

• The extension plays well with CATENATE.

• Further ESMTP extensions can be trivially integrated through IMAP capabilities.

The extension proposes a single IMAP command, the UID SENDMAIL. This com-
mands accepts a reference to an already existing message to be sent along with a
complimentary list of submission options. This list is intended to serve as a substitute
to the missing ESMTP envelope; in the initial version, clients can use it to specify
senders and receivers or for control of the DSN options. The command is also ready for
future extensibility; other options can be easily added to the specification when further
ESMTP extensions are defined.

A typical conversation with a SENDMAIL-capable IMAP server can therefore look
similar to the following (note that white space has been added to the UID SENDMAIL
command for clarity):

44

C: x UID SENDMAIL 123 (FROM "foo@example.org"
RECIPIENT "a@example.org"
RECIPIENT "b@example.org"
DSN (delay failure)

)
S: * 10 FETCH (UID 123 FLAGS (\$Submitted))
S: x OK Message passed to the sendmail binary

Changing Trojitá to support e-mail delivery via the proposed extension was just a
matter of plugging another implementation of its abstract MSA 7 interface.

Full text of this specification is available in section section A.3 on page 83. An
interesting discussion followed [133] after I posted my initial draft to the imapext
IETF mailing list.

7Mail Submission Agent

45

Chapter 5

The Mobile IMAP

Many of the existing IMAP extensions discussed in section 3 on page 16 have the po-
tential of improving the client’s operation tremendously. At the same time, experience
has shown that there is a certain chicken-and-egg problem with new proposals where
server vendors are not willing to invest their time into promising extensions which no
client supports yet and clients are not interested in implementing extensions which
they cannot test for interoperability. In this chapter, I am trying to provide a concise
summary of individual merit of these extensions.

5.1 The Lemonade Profile
The Lemonade profile, as defined in RFC 4550 [90] in 2006 and later updated through
RFC 5550 [89] during 2009, provides a list of extensions considered “critical” for any
mobile IMAP e-mail client. The set of mandatory extensions is rather big, though, and
to the best of my knowledge, there is no server on the market implementing all of the
compulsory features. One might therefore wonder what were the reasons for this lack
of general availability of the Lemonade extension family.

5.1.1 Cross-Service Requirements

One unique feature of Lemonade is the possibility to forward messages without their
prior download. The three ESMTP [122] and IMAP extensions, often referred to as the
Lemonade trio, namely the CATENATE, URLAUTH and BURL, allow the clients to
compose a message using existing parts available from the IMAP mail store, provide
a way of generating single-purpose “pawn tickets” for making the composed messages
available to the submission server, and replacing the DATA SMTP command with a
way of downloading the message from the IMAP server, respectively. This feature
prevents having to transfer potentially huge data over the network three times — once
when the users wants to read it, second time when the message is saved to the sent
folder, and finally when delivering via SMTP.

Unfortunately, a big problem with said approach is the fact that it mandates col-
laboration across different services — an explicit trust path between the IMAP and
ESMTP servers have to be set up, which is a process prone to errors [63]. This matter
is also complicated by the fact that no open source MTA 1 ships with official support
for BURL. 2 Situation is better on the IMAP server front with Cyrus supporting the

1Mail Transfer Agent, typically an SMTP or ESMTP server
2Unofficial patches exists for Postfix dating back to 2010 [134], but they have not been integrated

into the mainline version as of July 2012 (the postfix-2.10-20120715.tar.gz development snapshot.

46

URLAUTH and CATENATE extensions out-of-box with Dovecot’s support scheduled
for its upcoming 2.2 release [135].

5.1.2 Complicated Extensions

Some of the extensions whose support is mandated by the Lemonade proposal seems
to be notoriously hard for the server vendors to implement.

A perfect example is the CONTEXT=SORT extension [43]. As a client developer,
I recognize its extreme usefulness and appreciate its design. Availability of such an
extension would make it extremely easy to implement live-updated sorting in my Trojitá
(and Trojitá does make use of the sort context extension). That said, given that no
IMAP server which I am aware of announces its availability, clients have to deal with
the status quo in the meanwhile.

The CONVERT extension [38] belongs to a similar category — the features it offers,
like the server-side downscaling of JPEG images, would be very handy on a cell phone,
yet no IMAP server known to the author includes that functionality.

Both of these RFCs were published four and five years ago, respectively, and were
designed by engineers working for an IMAP server vendor. One cannot therefore dismiss
them altogether as a product of people not having any say in the server development.
My opinion is that the allocation of engineering resources required for shipping a par-
ticular feature in a finished product is based on another criteria than the research
activity.

5.2 State of Other Client Implementations
To obtain a better understanding on how the existing solutions available on the market
today use IMAP, this section takes a look at some of the most popular solutions.

5.2.1 Apple iOS

Apple’s devices generally ship with a decent implementation of their IMAP stack, an
evaluation shared by independent researchers [136]. The list of extensions supported by
the application includes CONDSTORE and ESEARCH for improved mailbox synchro-
nization, COMPRESS for transparent deflate compression and BURL for the forward-
without download.

It is, however, surprising that their support of extensions aimed at making mail-
box resynchronization more efficient does not include the QRESYNC extension [30],
especially given that its implementation does not impose much in terms of additional
requirements on top the already-supported CONDSTORE.

The iOS also notably does not use the IDLE command at all. The reason, according
to a message allegedly sent by Steve Jobs [137], is that is is “a power hungry standard”.
Systematic measurements [138] [139] and experience alike 3 shows, however, that the
mere act of having a TCP connection open with an occasional keep alive “pings” being
transfered have no significant impact on battery life on other platforms.

5.2.2 Android’s Native E-mail Client

There is not much to be said about Android’s native client’s IMAP performance — the
stock client does not offer push notification through IDLE [23] and the list of extension

3Mark Crispin’s famous “I have built on-demand networks which shut down until signaled back on,
and then happily resumed all the active TCP sessions even though the "network connection" had been
powered off for days.” [140].

47

identifiers referenced from the application’s source 4 only references the NAMESPACE,
UIDPLUS and STARTTLS capabilities. None of the extensions which try to improve
synchronization performance (the ESEARCH, CONDSTORE and QRESYNC) are
available. No provisions for Lemonade’s family are present at all. The LITERAL+, an
extension which takes literally no effort for clients to support and removes one network
round trip when uploading messages, is not supported.

Further analysis shows that the code is blocking and incapable of issuing or process-
ing requests in parallel. These observations are consistent with what users generally
describe as a “slow” experience. This might not come surprising given that Google
would likely prefer its users to choose Google’s own e-mail offering, the GMail, over
various private IMAP accounts for business reasons.

5.2.3 Android’s K-9 Mail

The Android’s K-9 mail [141] is a fork of the original e-mail application from Google.
The developers have managed to add support for two extensions, namely the IDLE and
the COMPRESS=DEFLATE. More advanced features like the ESEARCH / COND-
STORE / QRESYNC are however still missing.

Furthermore, comments like “TODO Need to start keeping track of UIDVALID-
ITY” 5 might make one feel nervous about the safety of the data being accessed.

5.2.4 Modest / Tinymail

The several years old Nokia N900 shipped with a mail client called Modest, an applica-
tion based on top of the Tinymail framework [142]. The underlying library supports an
efficient mailbox synchronization through QRESYNC and the sources contain a refer-
ence to the CONVERT extension — however, this functionality appears to be limited
and in an early state. The “Lemonade trio” for forwarding without download is not
supported.

The code is written using the synchronous idioms. No support for command pipelin-
ing is present.

5.2.5 Nokia’s Qt Messaging Framework

Nokia’s Qt Messaging Framework [143] powers the e-mail functionality in the MeeGo
Harmattan line of phones, the N9 and the N950. Support for extensions appears to
be rich — the Lemonade trio is supported in its entirety, 6 as well as are the COM-
PRESS=DEFLATE, BINARY, IDLE, CHILDREN and many others.

The underlying IMAP library exhibits regular “batched synchronization” mode of
operation; connections to mailboxes are typically not left alone for long, but the code
makes aggressive use of the QRESYNC extension to benefit from extremely cheap
mailbox synchronization. Code is written with memory-constrained devices in mind,
care is taken to prevent data copying if possible. The general behavior focuses on
making the specified subset of messages always available on device — there is no support
for server-side threading or sorting, but some form of a server-side search is available.

4File src/com/android/email/mail/store/ImapConnection.java from Android’s platform/
packages/apps/Email repository as of the android-4.1.1_r3-35-g01c55fd revision.

5File src/com/fsck/k9/mail/store/ImapStore.java, line 103 as of the Git revision 3.512-1249-
g5ce0e19 of the K-9’s source code repository.

6An interesting detail is that the BURL extension is disabled if the account is configured to use
IMAP over an SSL port instead of the STARTTLS; this is caused by a deficiency in the IMAP-URL
standard [144].

48

Live updates through CONTEXT=SEARCH are not employed. Support for the LIST-
STATUS is not available.

An interesting extension which is supported by the QMF is Google’s XLIST [145]
extension. However, the code 7 appears to only use the
Inbox mailbox flag for forcing case-insensitive mailbox comparison, a mechanism al-
ready mandated by the baseline IMAP protocol [2, p. 17].

All in all, the Qt Messaging Framework is a promising library with support for
other protocols besides IMAP. Its IMAP implementation feels solid and is reasonably
well covered by the unit tests.

5.2.6 Trojitá

Trojitá [146] is an advanced IMAP client which includes support for many different
extensions from the basic ones like IDLE, LITERAL+ or the ID extension to the
complex ones like the Lemonade trio or the ESEARCH / CONDSTORE / QRESYNC
triplet. Trojitá can scale up to company-wide ERP-level e-mail processing (Appendix
B.1.2, p. 94) while still using the same code base of the underlying IMAP library as
the desktop and cell phone version.

5.3 Evaluating Extensions
As the previous section shows, the level of support for various extensions and their real-
world deployment varies wildly. Many today’s clients are using only a limited subset
of features which are generally available, leaving opportunities for new applications
entering the market to offer smoother, more efficient user experience.

Previous efforts aimed at standardizing a set of extensions to serve as a “mobile
profile” of IMAP have not delivered a universally acceptable result. Lemonade, a spec-
ification universally considered to be the specification to go when evaluating clients and
servers alike [147], mandates a set of extensions which — to the best of my knowledge
— is not available on any single IMAP server in its entirety. Furthermore, the clients
do not even attempt to use these extensions, probably due to not being able to ver-
ify them for interoperability and because of concerns about shipping something which
could very well be considered a dead code.

The rest of this chapter tries to look at the available extensions through the optics
of a client developer who is trying to push the IMAP server developers slightly, but
not too much — pushing forward is crucial in attaining a sustainable development, yet
applying too much pressure often leads to the whole movement getting stuck on a first
obstacle. I make a few assumptions about the features which the client support; most
notably, the client should have a persistent cache to store already downloaded data.
The client is also expected to serve a human user who will work with the application
for many days across a network which might fail occasionally or even very often.

This humble taxonomy is not an attempt to define a level of support — entire
working groups dedicated to this task have failed to deliver a universally-accepted
solution despite spending many years on this goal. Instead, it is intended to serve as a
reference suggesting client and server developers alike what extensions might be useful.

Further details about the mentioned extensions are available in chapters three (p.
16 and four (p. 37).

7File src/plugins/messageservices/imap/imapprotocol.cpp as of QMF’s Git revision 2011W26_2-
263-gec26531.

49

5.3.1 The Bare Minimum

The first group of extensions lists those proposals which I consider to be a practical
requirement for a well-behaving client to implement. Furthermore, their implemen-
tation does not impose an overly significant burden on the servers, neither in terms
of complicated code and therefore increased development costs, nor in the runtime
overhead.

LITERAL+

Implementing the LITERAL+ extension actually reduces the amount of special code
which the client executes when transmitting data using literals. As such, there is no
excuse for not implementing this extension.

IDLE

Entering the IDLE mode enables the server to issue any untagged response, including
the EXPUNGE and VANISHED, at any time. Because the IMAP clients are already
required to handle any response at any time, actually making use of this feature should
not impose any extra requirements on their implementors. The only acceptable reason
for not using IDLE is, in my opinion, a technical deficiency in the platform’s TCP stack
and the related layers. If the total power consumption of the IDLE command exceed
periodic polling, clients shall refrain from calling IDLE.

ID

The ID command provides useful diagnostics about the other end of the IMAP channel.
Similar features exist in other Internet protocols. Hiding the name of one’s implemen-
tation is a weak form of security measure — existing efforts [148] are able to recognize
an IMAP server by its CAPABILITY response, a set of standard human-readable texts
and through additional criteria and it is conceivable that an alternative for clients is
feasible as well.

BINARY

The BINARY extension can delegate decoding of the content-transfer-encoding to the
server side. Given that servers compliant with the baseline IMAP protocol already have
to include a full MIME decoder, support for the BINARY extension is a firm candidate
for the basic level of the extension taxonomy in spite of the fact that the most widely
deployed IMAP server does not support it in its production releases yet.

UIDPLUS

Without the UIDPLUS extension, it is hard for clients to tell the UID of a message
they have just appended to the mailbox. On servers which support persistent storage
of UIDs, support for this extension does not add any further requirements.

CHILDREN, LIST-EXTENDED and LIST-STATUS

With the CHILDREN LIST extension, GUI clients do not have to explicitly issue one
more LIST command for each mailbox shown in the GUI to tell whether said mailbox
shall be drawn with a visual cue indicating its potentially expandable state. The LIST-
EXTENDED and LIST-STATUS allow for bundling of additional metadata with the
LIST responses and invoking the STATUS command, respectively.

50

ESEARCH

The ESEARCH response does not add any requirements on the IMAP servers besides
the fact that they must send the whole response at once. I believe that this is a
reasonable trade-off considering the benefits the compact uidset syntax can provide
when working with large mailboxes.

COMPRESS=DEFLATE

Given the ubiquitous presence of the ZLib library, clients shall make sure that either
the TLS compression is active or the COMPRESS=DEFLATE command is issued.
IMAP is a textual protocol and as such compresses extremely well.

5.3.2 Useful Extensions

The second group of extensions consists of those which are very valuable for the in-
creased efficiency of the protocol exchange, yet their implementation imposes a set of
requirements on the server vendors, CPU resources or generally requires considerable
effort to “get right”.

CONDSTORE and QRESYNC

The CONDSTORE extension enables clients to skip downloading of all flags upon each
mailbox reconnect. As such, it is highly desirable. It is not placed in the basic category
due to its implications on the server side, though.

With server requirements not significantly different to theCONDSTORE,QRESYNC
reduces the amount of data transferred when resynchronizing a mailbox after new mes-
sages have arrived and others have been expunged. Because it allows clients to skip
the UID map rebuild, significant bandwidth savings can be obtained. As such, clients
are highly recommended to support this extension.

ENABLE

The ENABLE extension is a requirement for QRESYNC. It does not add any additional
requirements on clients or servers, so it shall belong to the same category.

MULTIAPPEND

The MULTIAPPEND command improves performance in clients upload many mes-
sages at once — a scenario common in applications which support batched import of
existing e-mails. Clients which do not need this feature can safely ignore this extension.
MULTIAPPEND also mandates that the whole operation is atomic, that is, either all
of the messages are appended, or none for them are. For this reason, this extension is
not put into the basic level.

SENDMAIL

Servers implementing the SENDMAIL extension as proposed in this thesis free their
clients from having to speak the ESMTP protocol at all, a benefit bringing along stream-
lined end-user configuration and reducing support calls. However, due to a certain
political pressure against the adoption of any extension allowing message submission
via IMAP, I have decided to put SENDMAIL to the middle category.

51

CATENATE

If the client can make use of theCATENATE extension, it can be leveraged for tasks like
stripping out an unwanted attachment from a message otherwise considered valuable.
Its usefulness increases in combination with SENDMAIL or BURL where it allows for
full support for the “forward without download” functionality and significant bandwidth
reduction.

5.3.3 The Most Advanced Extensions

The last group contains those extensions which are either something special, exotic, or
generally hard to implement correctly. Clients can benefit from many extensions from
this group, yet one cannot expect to have them available on many IMAP servers due
to their inherent complexity or increased amount of requirements which they put on
the server.

SORT, SORT=DISPLAY and THREAD

These extensions present functionality which is very desirable from a client’s point of
view, yet requires the server to build an index of the whole mailbox contents at once.
In absence of this extension, clients wishing to offer threading support or those that
need to present the results to their users in a particular order have no choice but to
download additional data for every single message in the mailbox.

INCTHREAD, CONTEXT=SEARCH and CONTEXT=SORT

This group builds upon the functionality provided by SORT and THREAD by enabling
live updates to the results the client is interested in. In their absence, clients either
have to repeat the server-side operation once again whenever a new message arrive, or
defer to a purely client-side sorting or threading.

SEARCH=FUZZY

Adding support for “fuzzy search”, this extension mandates servers to build an equiv-
alent of a fulltext search index for the current mailbox, placing a significant burden on
the IMAP server.

URLAUTH and BURL

This subgroup of extensions is known as the “Lemonade trio”. Together, they allow for
efficient operations like forward-without download, drastically reducing the amount of
data to send when working with big messages. Due to the requirement for an explicit
trust path between the IMAP server and the ESMTP submission service, clients have
to anticipate problems when they try to utilize this functionality.

SPECIAL-USE and CREATE-SPECIAL-USE

A relatively new extension which allows clients to automatically obtain data about
what mailbox serves a “special purpose” — for example, containing all messages from
any other mailbox, or being designated as a “sent folder” by the system or account
configuration. This could become a very useful extension, but it is too early to mandate
its support now.

52

CONVERT

No servers that I am aware of deploy the CONVERT extension despite the time it has
been around. No matter how useful I find this extension, this trait alone puts it firmly
into the “speciality” group.

NOTIFY and MULTISEARCH

The NOTIFY builds where IDLE stopped, adding support for asynchronous notifica-
tion about state of many mailboxes without a need of keeping concurrent connections
opened. The MULTISEARCH command adds support for searches spanning several
mailboxes, improving the traditional model where clients are required to “hop” mail-
boxes periodically. Without much support on the server side, these extensions probably
cannot be relied upon in 2012.

53

Chapter 6

Trojitá’s Architecture

This chapter provides a brief introduction to the architecture of Trojitá from a pro-
grammer’s point of view. Additional information is provided in the documentation
shipped as a part of the source tree.

6.1 Overview of Components
Trojitá makes heavy use of certain idioms common in Qt programming and in object-
oriented software development in general.

At the highest layer lies the GUI, graphical code managing the actual user inter-
action. This code contains no knowledge of IMAP or any other e-mail protocol; it
is simply a graphical presentation layer specific to the desktop version of Trojitá. In
the releases intended for mobile platforms, the traditional QWidget-based GUI is re-
placed by a variant built on top of Qt’s QML [149], a framework especially suited for
touch-centric devices.

Any interaction with IMAP is initiated through the model-view framework [150]
and related utilities. A core class encapsulating a representation of a single IMAP
server, the Model class, is accompanied by various proxy models and other helpers to
segregate and transform the data into a better shape suitable for the upper layers.

Any action which shall take effect is, however, not performed by any of the model-
related classes. Trojitá utilizes the concept of tasks, a set of single-purpose classes each
serving a distinct role. Examples of such tasks are “obtain a connection”, “synchronize
a mailbox”, “download a message” or “update message flags”.

One layer below the Tasks, the Parser is located. This class along with its support
tools converts data between a byte stream arriving from or destined to the network
and higher-level commands and responses which are utilized by the upper layers. Ac-
tual network I/O operations are handled through a thin wrapper around Qt’s own
QIODevice called Streams. 1

6.1.1 Handling Input/Output

The raw byte streams provided by the network abstraction classes are intercepted
by the Parser class. It takes any incoming octet sequence and with the help of a
LowLevelParser instantiates the concrete subclasses of the AbstractResponse class.
Actual parsing of the responses is typically deferred to the corresponding Response

1TheQIODevice is wrapped to allow for transparent compression using the deflate algorithm. Due to
the historic reasons, the Stream subclasses use the has-a instead of the is-a approach; this was required
back when Trojitá shipped I/O implementations not based on the QIODevice class for evaluation
purposes. It also helps to reduce the amount of functions each I/O implementation has to implement.

54

constructors which will tokenize the incoming data through LowLevelParser’s methods
and act on their contents according to the corresponding grammar rules.

The response parsing had to be substantially relaxed from its original state due
to observed interoperability issues. Even the most popular IMAP implementations
struggled with following the ABNF-defined [151] syntax to the letter; the most iconic
example is Google’s service which has prevented the IMAP clients talking to it from
accessing forwarded messages for many years [11]. 2

For some time, Trojitá’s Parser was implemented in a separate thread in an attempt
to improve performance. However, profiling showed that the amount of time spent in
parsing was negligible compared to the rest of the application with the only exception
being the THREAD response which essentially requires a complex transformation of
nested lists. As such, the whole of Trojitá is now a single threaded application. 3

6.1.2 The Concept of Tasks

The Tasks are designed to collaborate with each other, and there is a network of de-
pendencies on how they can be used so that each task is responsible for only a subset
of the overall work required to achieve a particular goal. For example, when a message
shall be marked as read, an UpdateFlagTask is created. Because “marking message as
read” is implemented by manipulating IMAP message flags, an action which can only
happen while a mailbox is selected, the UpdateFlagsTask asks the Model to return
an instance of a KeepMailboxOpenTask, a “manager” object which is responsible for
keeping the mailbox state synchronized between the server and the client. 4 If the mail-
box is already opened, an existing instance of the KeepMailboxOpenTask is returned;
if that is not the case, a new instance is returned. The UpdateFlagsTask’s execution
is blocked and will commence only when (and if) the acquisition of a synchronized
status succeeds. Similarly, this “maintaining” task (the KeepMailboxOpenTask itself
deals just with incremental updates to the mailbox state and is activated only when the
mailbox is opened. The actual mailbox synchronization is delegated to the ObtainSyn-
chronizedMailboxTask. This synchronizer obtains the underlying connection handle
through consultation with the Model to decide whether a new connection shall be es-
tablished or an existing one re-purposed. This policy decision is completely contained
in the Model and is not visible to other layers (or the tasks) at all.

Similar divisions of responsibility exist during other scenarios; the supporting in-
frastructure makes sure that no actions are started unless their prerequisites have suc-
ceeded.

The whole hierarchy is presented to the user in various shapes; the most basic and
rudimentary one is a “busy indicator” showing whether any activity is taking place.
A more detailed view showing an overview of all active tasks in a tree-like manner
illustrating their dependencies is available (see the TaskPresentationModel class in
Trojitá’s sources).

The introduction of Tasks to Trojitá in 2010 proved to be an excellent decision
allowing for much increased development pace and contributed to the much improved
robustness and code clarity. Thanks to a proper use of git’s branches, the transition
was undertaken over a longer time pried without disturbing the ongoing application
development.

2As of mid-2012, this issue remains unfixed despite my bug reports raised through both official and
unofficial channels.

3The WebKit engine used in HTML rendering creates threads for its individual purposes; the similar
behavior is observed in the QML engine used in the mobile version. These threads are not counted
here, for they are considered to come from the “system libraries”.

4The KeepMailboxOpenTask also serves as a dispatcher ensuring that the selected mailbox is
switched only when any tasks which needed a particular mailbox open will have finished.

55

The Tasks are instantiated by an auxiliary factory class in order to better facilitate
automated unit testing with mock objects.

6.1.3 Routing Responses

The Tasks introduced in the previous section are also used for proper response process-
ing. At all times, the Model can access a list of “active tasks” which are assigned to a
particular IMAP connection. When a response arrives, it is dispatched to these tasks
in a well-defined order until either of the tasks declares the response as “handled”. If no
task claims responsibility for a particular response, the Model itself takes action. This
action might be either regular processing, or, in case the Model cannot safely take care
of said response, an error being raised and the connection sewered to prevent possible
data loss due to suspected bug in the IMAP implementation.

The responses themselves are communicated to the Model (and, through it, to the
responsible Tasks) through a queue of responses using Qt’s own signal-and-slot mech-
anism. The same way of passing data is used for additional “meta information” like
informing about connection errors, parser exceptions or the low-level SSL/TLS cer-
tificate properties. Having a unified queue of the incoming data made error handling
much more elegant. 5 Care has been taken to optimize this parsed data passing to
minimize the amount of copying and — in general — Qt’s QMetaObject invocations
while balancing the GUI responsiveness. The IMAP handlers now process the incoming
responses in batches, pausing every so often to allow the GUI to keep up with other in-
coming events to prevent an appearance of the whole application “freezing” temporarily.
The selected approach works well even on cell phones with limited resources.

Any responses passing through the queue are also logged into an in-memory ring
buffer. Should an error occur, this buffer is used as a “black box” device which is
shown to the user to give her a better context of what went wrong. This debug logging
proved to be extremely valuable in debugging interoperability issues with non-compliant
servers as well as when fixing bugs in Trojitá.

6.1.4 Models and Proxies

Historically, much of the IMAP logic in Trojitá has been concentrated in the Model
class. Over the time, I’ve refactored that code to separate modules; however, even to-
day, the Model handles both data publication through the Qt’s model-view framework
as well as IMAP response dispatch to the relevant Tasks. With little less than two
thousands of physical lines of code, the Model remains the second-largest source file
in the code base (the biggest file is a unit tests related to various modes of mailbox
synchronization).

The Model itself exports a view containing anything available from a particular
IMAP server account through the Qt’s model-view API. The actual data is stored in a
tree formed by various TreeItem subclasses.

As showing a single, rich-structured tree containing everything from mailboxes to
individual message parts would not be particularly user-friendly, a number of so called
proxy models were created. These models usually operate on Qt’s QModelIndex level,
but where profiling showed that a compelling speed increase would result from bypassing
the QVariant abstraction, direct access through the underlying (and Trojitá-specific)
TreeItem classes was used instead. This has notably affected the design of the Thread-
ingMsgListModel which is actually the biggest consumer of the CPU time when Trojitá
opens a huge mailbox and activates message threading for the first time.

5Previously, matters were complicated by the way how QWidget-based UIs tend to deal with errors
through dialog boxes which trigger nested event loops.

56

Proxies exist for performing various transformations and filtering of the available
data; some of them (like theMailboxModel andMsgListModel) are generic enough and
used in all of the desktop client, the mobile application and the single-purpose batch
synchronizer (see Appendix B.1.2, p. 94) while others (like the PrettyMsgListModel)
are exclusive to the traditional desktop GUI.

6.1.5 Lazy Loading and Cache

The model-view separation strictly followed throughout Trojitá proved to be very useful
when leveraging the full potential of many advanced IMAP features. Because the
individual message parts are accessible separately, Trojitá’s native mode of operation
supported the often-mentioned use case of “only download a tiny text accompanying
the big photo attachment and then ask user whether to fetch the photo” without any
effort. At the same time, this separation made certain tasks which would typically be
considered trivial a bit more demanding — e.g. when forwarding a message, Trojitá
has to explicitly retrieve two independent body parts, one for the headers and one for
the message payload, and explicitly join them together. On the other hand, in most of
the situations this separation brought benefits visible to the end user which trumped
the minor, uncommon complications.

Any data once downloaded are kept in a persistent cache. This feature allows Trojitá
to work extremely well under unfavorable network conditions. It also allows its users
to access any data which were already known previously in an offline mode.

Several caching backends are shipped in Trojitá; some of them store data exclusively
in memory and therefore are not persistent per se, others use SQLite [152] for actual
data storage. Another mode which offloads “big data” storage to additional on-disk
files is used by default. 6

6.2 The Mobile Version
Trojitá also ships with a special version targeted for use on cell phones with touch
screen such as Nokia’s N9. The release was tested on the Nokia N950, a developer
device which I obtained through Nokia’s Community Device Programme (Appendix
B.1.3, p. 94).

The touch-optimized version of Trojitá shares most of the code with the desktop
version; in particular, none of the underlying IMAP code had to be modified. The
changes were concentrated solely in the GUI layer which was completely rewritten using
QML [149], Qt’s declarative language for fluid user interface creation. A certain amount
of C++ code was also required, mainly for seamless integration of the underlying data
providers with the JavaScript-based QML data presentation.

I also had to extend some of the existing Qt classes with proper functions required
for Trojitá. One of them was replacing QML’s native QDeclarativeWebView com-
ponent, an QML item encapsulating WebKit, the HTML renderer. This replacement
was required because the stock version from upstream Qt did not support specifying
a QNetworkAccessManager instance to use on a per-item basis [153]. In QML, the
whole QML scene shares a single instance of the QNetworkAccessManager which is
used for all sorts of data fetching. In Trojitá, such a behavior is unacceptable for
security reasons because the actual message data are transferred through said man-
ager, and the manager therefore has to implement a proper security policy denying

6Work on the structured cache backends was sponsored by the KWest GbmH. (Appendix B.1.1,
p. 94).

57

any requests for external elements. 7 Another reason for this separation is to make
sure that each QNetworkAccessManager can only access data originating from a sin-
gle e-mail message, an enforcement crucial to prevent phishing attempts and maintain
the confidentiality of the user’s messages. There were also additional technical reasons
for this extension, some of which were related to a documented requirement of QML’s
global instance adding provisions for future multithreaded access, a requirement which
Trojitá’s implementation explicitly does not guarantee for performance reasons.

Apart from the mentioned issues, the porting proved to be very easy, to the extent
when the most limiting factor were the author’s lack of familiarity with QML and this
technology’s relative immaturity and lack of existing components when compared to
the “regular” Qt applications. 8 No design decisions of the application were hit as
obstacles during the porting process.

Trojitá’s asynchronous mode of operation where any data transfers are performed
in the background, without blocking the user interface, was paramount in achieving a
decent performance and smooth UI updates. The batched data processing mentioned
in previous sections of this chapter is an example of a performance optimization which
contributed to the excellent responsiveness of the cell phone version.

The mobile version is still not as mature as the regular desktop release; most im-
portantly, it does not support sending e-mails for now. Proper platform integration
should also be done in future. For these reasons, the application was submitted to
the Ovi store, Nokia’s “app store” product, as a technical preview. Even at its present
state, however, the application is very useful for accessing user’s e-mail on the go and
for quick checking of whether something important has happened. Trojitá’s support
for many IMAP extensions which reduce the overall bandwidth consumption was also
tremendously useful — many of them, like the CONDSTORE and QRESYNC, were
designed with exactly this use case in mind and are also reasonably wide deployed
among the publicly available IMAP server implementations.

6.3 Regression Testing
The IMAP protocol implementation developed as a part of Trojitá is covered by an
extensive test suite verifying its behavior under varying conditions. All extensions
supported by Trojitá which relate to e-mail retrieval are covered by the test suite.

Most of the testing works by replacing the connection to the IMAP server by a mock
object capable of verifying that the transmitted data matches the developer’s expecta-
tions and returning the sample responses back. This approach is self-contained, does
not require any other software to test and therefore increases the chances of regressions
getting caught before they made their way to a production release.

The following is an example on how an actual test might look like:

/** @short Test QRESYNC reporting changed flags */
void ImapModelObtainSynchronizedMailboxTest::testQresyncChangedFlags()
{

7If the e-mail rendered was able to access external data, e.g. fetch images from the Internet at will,
the resulting HTTP transfers would compromise the user’s privacy and reveal confidential information
like presence and schedule of a real person accessing a particular e-mail account. Such tracing can be
trivially implemented by including a unique identifier in the image URL, which is the reason why any
decent MUA rejects such network requests by default.

8An example is the lack of a QSettings equivalent in QML; users are suggested to use raw SQL
access through openDatabaseSync method which is indeed much more flexible, but also located several
layers below the QSettings on an index of the out-of-box usability — clearly, writing custom SQL
queries is more demanding than issuing a call to int i = QSettings().value("i").toInt().

58

// Trick the IMAP code into believing that the server supports QRESYNC
// The test environment can do that without the burden of explicitly
// faking the CAPABILITY response.
FakeCapabilitiesInjector injector(model);
injector.injectCapability("QRESYNC");

// Simulate the previous state of the mailbox
Imap::Mailbox::SyncState sync;
sync.setExists(3);
sync.setUidValidity(666);
sync.setUidNext(15);
sync.setHighestModSeq(33);
QList<uint> uidMap;
uidMap << 6 << 9 << 10;

// Store the simulated state in the persistent cache
model->cache()->setMailboxSyncState("a", sync);
model->cache()->setUidMapping("a", uidMap);
model->cache()->setMsgFlags("a", 6, QStringList() << "x");
model->cache()->setMsgFlags("a", 9, QStringList() << "y");
model->cache()->setMsgFlags("a", 10, QStringList() << "z");

// At this point, we can proceed with actual testing

// Initiate the activity
model->resyncMailbox(idxA);
// Check the I/O communication
cClient(t.mk("SELECT a (QRESYNC (666 33 (2 9)))\r\n"));
cServer("* 3 EXISTS\r\n"

"* OK [UIDVALIDITY 666] .\r\n"
"* OK [UIDNEXT 15] .\r\n"
"* OK [HIGHESTMODSEQ 36] .\r\n"
"* 2 FETCH (UID 9 FLAGS (x2 \\Seen))\r\n"
);

cServer(t.last("OK selected\r\n"));
// Make sure that nothing else was transferred "over the network"
cEmpty();

// Verify that the persistent cache had been updated properly
sync.setHighestModSeq(36);
QCOMPARE(model->cache()->mailboxSyncState("a"), sync);
QCOMPARE(static_cast<int>(model->cache()->mailboxSyncState("a").exists()),

uidMap.size());
QCOMPARE(model->cache()->uidMapping("a"), uidMap);
QCOMPARE(model->cache()->msgFlags("a", 6),

QStringList() << "x");
QCOMPARE(model->cache()->msgFlags("a", 9),

QStringList() << "\\Seen" << "x2");
QCOMPARE(model->cache()->msgFlags("a", 10),

QStringList() << "z");

59

// Make sure that we’ve picked up the changed flag
QCOMPARE(idxA.data(Imap::Mailbox::RoleUnreadMessageCount).toInt(), 2);

// Nothing else should be running
justKeepTask();

}

Trojitá includes many of these individual test cases covering both regular operation
as well as several pathological scenarios which would be tricky to hit in the real world.
In addition to that, the automated tests also verify speed of mailbox synchronization
with folders containing hundreds of thousands of messages, a scenario which might be
rare in practice 9 but extremely useful for catching programmer mistakes like proposing
an O(n2) algorithm 10 over an O(n log n) one — in spite of the fact that the overhead of
the testing framework, especially when working with huge data transfers, as is indeed
the case when synchronizing such a mailbox, is comparable to the actual code being
profiled.

6.3.1 Scalability

I’m regularly testing Trojitá on mailboxes with hundreds of thousands of messages.
Trojitá’s unique design which guarantees that only the required data is transferred is
paramount in achieving (and retaining) reasonable performance under varying work-
loads.

Trojitá respects all relevant recommendations about incremental retrieval of data.
Unless in the so called “expensive mode” where Trojitá tries to save bandwidth at
the cost of increased waiting time, an intelligent preload is implemented which will
seamlessly ask for data which is likely to be required in future in a background preload
operation.

6.3.2 Command Pipelining

Whenever possible, Trojitá issues the IMAP commands in parallel. 11 Unfortunately,
many expensive operations invoked on the server side often requires mailbox-wide locks,
at least in the current server’s implementations. An example of such behavior are
Dovecot’s adaptive indexes [154] which are created on-demand, in response to actual
client’s requests. When Trojitá asks for threading on a big mailbox for the first time,
Dovecot will block handling the threading request and building the required index, not
responding to a query for metadata of messages, even though Trojitá has already issued
a command requesting their delivery.

Under normal circumstances, though, pipelining is crucial for decent performance
in presence of excess network round trip times, and this parallel delivery of commands
works extremely well even in case where the servers are unable to fulfill the requests in
parallel.

9The Seznam.cz, the most popular Czech free e-mail provider, imposes a limit of just 30,000 messages
per account as of early 2012.

10It was necessary to locate a message in the mailbox by its UID. A conventional binary search
algorithm was not applicable because the search could encounter “message placeholders” whose UID
was not know, and therefore could not be compared to the reference value. In the end, measurements
have shown that starting with binary search and falling back on a linear scan later in the process upon
encountering the first undefined value works fast enough in all tested circumstances.

11The parallelization imposes a configurable limit on the number of concurrently active tasks so as
not to overload the server.

60

6.3.3 Low-level optimization

Performance measurements were undertaken using Valgrind’s [155] callgrind [156] tool
while memory usage was tracked using Valgrind’s massif [157]. It is hard to compare
existing clients based on the “consumed memory” alone, especially when considering
that certain desktop clients like KDE’s Akonadi-based [158] products are split into
several processes, many of which are handling both IMAP-related and unrelated oper-
ations. The memory profiling was therefore concentrated on making Trojitá’s memory
usage “reasonable” and for checking of obvious regressions.

Some of the results I have observed when profiling the code were initially rather sur-
prising — for example, replacing a QStringList implementation by a QSet<QString>
one actually increased the memory usage from 296 MB in a synthetic benchmark 12 to
385 MB, i.e. by roughly one third — a result caused by the QSet’s hash table memory
overhead.

In the end, the total use in the mentioned benchmark was reduced to just 186 MB
by explicit use of QString’s implicit sharing where the actual text data are saved in
memory only once, using QString’s native reference counting. The results could be
likely improved by moving the data sharing one level up to the level of the whole
QStringList instead of the underlying elements.

More drastic reductions could be obtained by actively removing unused data from
memory and reducing the amount of empty placeholders being initialized to “null”
values in the TreeItemMessage instances, or, potentially, deferring their instantiations
indefinitely till the corresponding messages come to the widget’s viewport. However,
no compelling reason to do so on the target platforms was observed so far.

12The test used was ImapModelObtainSynchronizedMailboxTest::testFlagReSyncBenchmark as of
commit cf92f5f9f8e929e1427877c0db470d8c59651d3b (March 2012) with the number of messages in
mailbox being increased to half a million. Measurements were performed on an x86_64 Gentoo Linux
machine running Qt 4.7.1.

61

Chapter 7

Conclusion

The goal of this thesis was to investigate the existing IMAP extensions, evaluate how
well they contribute to the operation of a mobile e-mail client, and find out what areas
could benefit from further optimization. All of these goals were fulfilled.

The “mobile client” I often speak about throughout this thesis is today a very
powerful device, and one that is very, very different from what was considered a “mobile
client” just a few years ago. An ordinary phone that people use on a daily basis has
typically a 1 GHz CPU with a gigabyte of RAM and can transfer data at the rate
of several tens of megabits per second. However, should these powerful resources be
fully utilized, the battery life would drop to mere hours at best. With great power
comes great responsibility, and in the context of mobile applications this responsibility
directly translates to a need of eliminating data transfers and CPU-heavy client-side
operations as much as possible. Thankfully, the IMAP protocol and its rich extension
family provide ample opportunities for delegating a fair amount of processing to the
server.

The available IMAP extensions range from simple tweaks of the protocol behavior
and experimental facilities adding completely different features to IMAP all the way
to the extensions which are hard to implement, but provide the protocol speakers with
features or processes which would otherwise not be achievable, or prove to be needlessly
hard to attain. Certain features, formerly designed to accommodate hardware designs
which are ancient through today’s optics (like the support for command pipelining
which was meant to allow the computer operators to physically locate a tape in their
archive and mount that on the user’s behalf), are today crucial for sustaining high
performance over cellular networks with rather big round-trip times.

I believe that one cannot really evaluate a proposal without getting a perfect grasp
of the changes it introduces. This is why I implemented most of the available extensions
in Trojitá, my free software project dedicated to building a usable, fast and lightweight
IMAP e-mail client. Functions which remained cumbersome or still required substantial
data transfers even after the support for the existing extensions was added proved to
be excellent candidates for proposing concrete enhancements.

I have selected three areas in which the IMAP protocol can be still improved. These
areas do not have much in common. It was my intention to demonstrate that even more
than twenty years after the IMAP protocol was conceived, it can be still built upon and
modified to better suit today’s needs, and that these opportunities can be discovered
on multiple fronts.

As an example of a rather low-hanging fruit, I have proposed an extension which
fixes a possible race condition in the QRESYNC extension. This bug illustrates the
process of the protocol design pretty well — despite a concerted effort of many people
involved in drafting and reviewing of the proposal, bugs can still creep in.

62

A second extension which I have included in this thesis optimizes the behavior of an
online client. By building on top of three separate extensions which have been around
for years, it allows an IMAP client to obtain threading information for messages in an
incremental manner, preventing downloads of huge amount of data over and over again.

My last proposal deals with a relatively hot topic in the IMAP sphere — it adds
a support for message submission to happen over IMAP. The question about whether
this approach is the correct one has historically divided the protocol experts and soft-
ware vendors into two hostile camps, one with cheering proponents, the other holding
vigorous critics. People have tried to achieve a similar result by various means, but so
far nothing as simple as the proposed UID SENDMAIL has ever got enough traction.

All of the extensions which I have designed were submitted for review to the expert
group through mailing lists related to the IMAP protocol and its extensions. Especially
with the last proposal, an interesting discussion has been sprouted. It will be interesting
to watch the fate of the proposals as they enter the IETF standardization process. With
luck and enough patience, they might even become an RFC one day.

The Trojitá application has received a substantial amount of attention throughout
my work on this thesis. The project has grown almost three times in its overall size since
my bachelor thesis on this subject. I was happy to receive contributions from people
all over the world. Two companies expressed their interest in basing their commercial
offering on top of Trojitá; I was hired to perform a contracted work on Trojitá on their
behalf. A completely new version of the user interface optimized for touch-controlled
cell phones has been developed and — thanks to a generous donation from Nokia —
ported to the MeeGo line of smartphones. Interoperability testing revealed quite a few
bugs, both in Trojitá as well as in production releases of IMAP servers from many
software vendors, opensource and proprietary variants alike.

7.1 Future Work
This thesis represents the result of my ongoing involvement with IMAP and e-mail
related topics in general. It is my intention to carry on this work in future.

The documents I proposed will have to be maintained. People known in the IMAP
world have already raised their questions and provided valuable comments on the func-
tionality of the extensions, some of them expressed explicit interest and willingness to
implement them in their own products. I will do my best to shepherd the drafts through
their long journey towards possible acceptance. Even if this process fails and no RFC
gets directly produced, the approach will still have been documented and available for
future protocol engineers and developers.

The Trojitá as a free software project will certainly benefit from its increased visi-
bility. There is a long list of features which might be added in future, be it support for
signed or encrypted e-mails or pushing harder for implementation of more extensions
among the IMAP servers. The mobile version could certainly be ported to other phone
platforms as well. Targeting Android will definitely be a welcome improvement.

Some of the extensions which are mentioned in this thesis were not implemented
in Trojitá for various reasons, typically due to the fact that I was not able to find
any servers announcing their availability. This should change in future — some of the
IMAP server vendors have already expressed their interest in implementing quite a few
of these advanced features. Thanks to its internal structure, I am confident that Trojitá
will be able to accommodate these new proposals as they arrive.

63

Appendix A

Proposed Internet Drafts

This chapter contains full text of the Internet Drafts which I have submitted for com-
munity consideration.

The Internet Drafts are written in a custom document format which is the reason
why these documents are presented in a dedicated section rather than being included
as regular chapters of this thesis.

A.1 draft-imap-qresync-arrived
Next seven pages contain a copy of draft-imap-qresync-arrived. This extension is
introduced in section section 4.1 on page 37.

64

65

66

67

68

69

70

71

A.2 draft-imap-incthread
Next ten pages contain a copy of the draft-imap-incthread. The background of this
extension is discussed in section section 4.2 on page 39.

72

73

74

75

76

77

78

79

80

81

82

A.3 draft-imap-sendmail
Next ten pages contain a copy of draft-imap-sendmail. This extension is described in
depth in section section 4.3 on page 41.

83

84

85

86

87

88

89

90

91

92

93

Appendix B

Acknowledgement

This appendix provides full reference about third party contributions to the Trojitá
code base. It also mentions the commercial ecosystem built around this open-source
project.

B.1 Commercial Applications

B.1.1 Partnership with KWest GmbH.

In early 2010, I was contracted [159] by a German embedded systems vendor, the KWest
GmbH (lately acquired by Blaupunkt). That company was tasked by a German ISP for
developing a tablet and were looking for an e-mail client to ship. Even though the tablet
was not finished for reasons unrelated to Trojitá, but this collaboration significantly
improved the feature set of Trojitá.

B.1.2 Collaboration with OpenMFG LLC, dba xTuple

Later in 2010, an American CRM 1 vendor, the OpenMFG LLC, dba xTuple, were on
a search for a solution integrating customers’ e-mail correspondence into their ERP
database. I was contracted to add the required features to Trojitá. The project suc-
cessfully concluded in early 2011 and shipped on time.

More details about the whole architecture are available on xTuple’s product website
[160].

B.1.3 Nokia Developer Participation

In 2011, my application for Nokia’s Community Device Program was accepted. Nokia
was kind enough to provide their MeeGo smartphone, the N950, on loan. I have used
this opportunity to build a version of Trojitá optimized for this platform [161].

This application was also presented at the OpenMobility conference in Prague [162].

1Customer Resource Management

94

B.2 Third-party Contributions
Although I’m the principal author of the vast majority of code in Trojitá, the project
is run in an open environment as a free software. This model has attracted quite a
few developers — both individuals and from established software vendors — over the
course of the project history. This section presents a complete overview of all of their
contributions. It is sorted in a chronological order.

Justin J contributed improvements to the GUI.

Benson Tsai started the effort of providing an optimized user interface suitable for
portable devices. Portions of his work remained unmerged due to technical issues
in compatibility with the desktop version, but his patches were most inspiring.

Gil Moskowitz from OpenMFG LLC, dba xTuple contributed patches towards better
PostgreSQL integration in the xTuple e-mail synchronizer shipped as part of
Trojitá.

John Rogelstad from OpenMFG LLC, dba xTuple improved PostgreSQL interoper-
ability through use of xTuple’s own XSqlQuery classes and fixed a build failure
on Windows.

Jiří Helebrant contributed GUI improvements and the Trojitá’s logo and application
icon. He is also the author of the web site design.

Jun Yang submitted a patch fixing a build failure under Visual Studio 2008. He also
reported an interoperability problem with STATUS response parsing with servers
not conforming to RFC 3501.

Andrew Brouwers is the author of the .desktop file which ships with Trojitá and of
the initial version of the .spec file used for building RPMs.

Tomáš Kouba cleaned up the C++ code. He also reported build failures with older
versions of Qt.

Mariusz Fik of OpenSuSE improved the .spec file. He also started using OpenSuSE’s
Open Build Service for building Trojitá.

Thomas Gahr from Ludwig-Maximilians-Universität München implemented a simple
address book, improved the GUI and made sure that new arrivals are properly
reported.

Shanti Bouchez added support for tagging e-mails with arbitrary keywords. She also
improved SMTP interoperability and enabled SSL/TLS support in there.

Chase Douglas from Canonical Ltd. added a feature for hiding of already read mes-
sages from the message listing.

Wim Lewis fixed encoding of human-readable names in outgoing messages.

Thomas Lübking contributed a feature for raw IMAP searching, fixed quite a few
QWidget issues and submitted many GUI improvements in general.

I’d like to use this opportunity to also extend my gratitude to all users who reported
bugs or encouraged further development of Trojitá.

95

B.3 Use of Existing Libraries
Trojitá makes use of the following third party libraries:

The Qt framework is used throughout the code as Trojitá is a Qt application.

The Qt Messaging Framework provided code for wrapping the deflate compression
algorithm in a Qt API. It is also used for low-level character set conversions and
MIME encoding/decoding.

ZLib is used as a backend for actual deflate compression and decompression.

The KDE project’s PIM libraries was used for low-level string manipulation, char-
acter set conversion and related operations.

The QwwSmtpClient library from Witold Wysota is used for speaking the SMTP
protocol. Several fixes were applied on top of the original release.

ModelTest is a testing tool for verifying QAbstractItemModel invariants. It is
shipped as part of the source tree for technical reasons.

96

Appendix C

The Attached CD

C.1 Contents of the CD
The attached CD is an integral part of this thesis. The contents of the top-level trojita
directory is the following:

internet-drafts The Internet-Draft manuscripts with extensions proposed as a part
of this thesis

src A compressed tarball containing the source code of the Trojitá IMAP client

thesis A printable PDF file with the text of this thesis

C.2 Build Instructions
In order to build Trojitá, please follow these instructions:

• Make sure that Qt 4.6 (or newer), including its development headers, is present
on the machine

• If compiling on a Unix host, make sure that the pkgconfig and zlib are available
as well

• Enter the directory with Trojitá’s source code

• Execute mkdir _build; cd _build

• Run qmake CONFIG+=debug ../trojita.pro to configure the package

• Execute make -j4 in order to build the application

After following these instructions, Trojitá can be launched by running:
./src/Gui/trojita.

97

Bibliography

[1] Heidar Bernhardsson. IMAP is evil. Comment on a blog post (online), April 2012.
URL http://blog.haraldkraft.de/2012/04/imap-is-evil/#comment-2156.

[2] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1.
RFC 3501 (Proposed Standard), March 2003. URL http://www.ietf.org/rfc/
rfc3501.txt. Updated by RFCs 4466, 4469, 4551, 5032, 5182, 5738, 6186.

[3] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Standard),
May 1996. URL http://www.ietf.org/rfc/rfc1939.txt. Updated by RFCs 1957,
2449, 6186.

[4] Jan Kundrát. Trojita: A Qt IMAP Client. Bachelor thesis, May 2009. URL
http://trojita.flaska.net/thesis.pdf.

[5] Mark Crispin. IMAP MOVE extension. Comments on the imap-protocol
mailing list, June 2010. URL http://mailman2.u.washington.edu/pipermail/
imap-protocol/2010-June/001144.html.

[6] Mark Crispin. IMAP MOVE extension. Comments on the imap-protocol
mailing list, June 2010. URL http://mailman2.u.washington.edu/pipermail/
imap-protocol/2010-June/001156.html.

[7] Bill Shannon. Reporting/detecting expunged messages. Comments on the imap-
protocol mailing list, September 2006. URL http://mailman2.u.washington.
edu/pipermail/imap-protocol/2006-September/000261.html.

[8] Mark Crispin. Childless noselect mailboxes. Comments on the imap-
protocol mailing list, December 2009. URL http://mailman2.u.washington.edu/
pipermail/imap-protocol/2009-December/001043.html.

[9] Jorma Kilpi and Pasi Lassila. Statistical analysis of RTT variability in GPRS and
UMTS networks. Technical report, November 2005. URL http://www.netlab.
tkk.fi/tutkimus/pannet/publ/rtt-report.pdf.

[10] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies. RFC 2045 (Draft Standard), November
1996. URL http://www.ietf.org/rfc/rfc2045.txt. Updated by RFCs 2184, 2231,
5335, 6532.

[11] Jan Kundrát. GMail IMAP: returning BODYSTRUCTURE for em-
bedded messages. Comments on the imap-protocol mailing list, May
2011. URL http://mailman2.u.washington.edu/pipermail/imap-protocol/
2011-May/001413.html.

[12] P. Resnick. Internet Message Format. RFC 2822 (Proposed Standard), April 2001.
URL http://www.ietf.org/rfc/rfc2822.txt. Obsoleted by RFC 5322, updated by
RFCs 5335, 5336.

98

http://blog.haraldkraft.de/2012/04/imap-is-evil/#comment-2156
http://www.ietf.org/rfc/rfc3501.txt
http://www.ietf.org/rfc/rfc3501.txt
http://www.ietf.org/rfc/rfc1939.txt
http://trojita.flaska.net/thesis.pdf
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-June/001144.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-June/001144.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-June/001156.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-June/001156.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2006-September/000261.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2006-September/000261.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2009-December/001043.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2009-December/001043.html
http://www.netlab.tkk.fi/tutkimus/pannet/publ/rtt-report.pdf
http://www.netlab.tkk.fi/tutkimus/pannet/publ/rtt-report.pdf
http://www.ietf.org/rfc/rfc2045.txt
http://mailman2.u.washington.edu/pipermail/imap-protocol/2011-May/001413.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2011-May/001413.html
http://www.ietf.org/rfc/rfc2822.txt

[13] K. Moore. MIME (Multipurpose Internet Mail Extensions) Part Three: Message
Header Extensions for Non-ASCII Text. RFC 2047 (Draft Standard), November
1996. URL http://www.ietf.org/rfc/rfc2047.txt. Updated by RFCs 2184, 2231.

[14] J. Myers. IMAP4 non-synchronizing literals. RFC 2088 (Proposed Standard),
January 1997. URL http://www.ietf.org/rfc/rfc2088.txt. Updated by RFC
4466.

[15] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (Informational), May 1996. URL http://www.ietf.org/rfc/rfc1951.txt.

[16] A. Gulbrandsen. The IMAP COMPRESS Extension. RFC 4978 (Proposed Stan-
dard), August 2007. URL http://www.ietf.org/rfc/rfc4978.txt.

[17] C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595 (Proposed
Standard), June 1999. URL http://www.ietf.org/rfc/rfc2595.txt. Updated by
RFC 4616.

[18] Jiří Peterka. Kauza DigiNotar, aneb: když certifikační autorita
ztratí důvěru, September 2011. URL http://www.lupa.cz/clanky/
kauza-diginotar-aneb-kdyz-certifikacni-autorita-ztrati-duveru/.

[19] Adam Langley. Public key pinning, May 2011. URL http://www.imperialviolet.
org/2011/05/04/pinning.html.

[20] B. Leiba. IMAP4 IDLE command. RFC 2177 (Proposed Standard), June 1997.
URL http://www.ietf.org/rfc/rfc2177.txt.

[21] Mark Crispin. IMAP Idle. Comments on the imap-protocol mailing list,
March 2008. URL http://mailman2.u.washington.edu/pipermail/imap-uw/
2008-March/001959.html.

[22] Timo Sirainen. iOS IMAP IDLE (Standard "Push Email") Deficiency,
Explanation? Comments on the imap-protocol mailing list, October
2010. URL http://mailman2.u.washington.edu/pipermail/imap-protocol/
2010-October/001311.html.

[23] Issue 23971: IMAP idle (PUSH email) is not supported. Android bug tracker.
URL http://code.google.com/p/android/issues/detail?id=23971.

[24] Dave Cridland. RE: UID SEARCH responses. Comments on the IETF’s
imapext mailing list, August 2007. URL http://www.ietf.org/mail-archive/
web/imapext/current/msg00458.html.

[25] A. Melnikov and D. Cridland. IMAP4 Extension to SEARCH Command for Con-
trolling What Kind of Information Is Returned. RFC 4731 (Proposed Standard),
November 2006. URL http://www.ietf.org/rfc/rfc4731.txt.

[26] Mark Crispin. UID SEARCH responses. Comments on the IETF’s imapext mail-
ing list, August 2007. URL http://www.ietf.org/mail-archive/web/imapext/
current/msg00477.html.

[27] Alexey Melnikov. UID SEARCH responses. Comments on the IETF’s
imapext mailing list, August 2007. URL http://www.ietf.org/mail-archive/
web/imapext/current/msg00472.html.

99

http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2088.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc4978.txt
http://www.ietf.org/rfc/rfc2595.txt
http://www.lupa.cz/clanky/kauza-diginotar-aneb-kdyz-certifikacni-autorita-ztrati-duveru/
http://www.lupa.cz/clanky/kauza-diginotar-aneb-kdyz-certifikacni-autorita-ztrati-duveru/
http://www.imperialviolet.org/2011/05/04/pinning.html
http://www.imperialviolet.org/2011/05/04/pinning.html
http://www.ietf.org/rfc/rfc2177.txt
http://mailman2.u.washington.edu/pipermail/imap-uw/2008-March/001959.html
http://mailman2.u.washington.edu/pipermail/imap-uw/2008-March/001959.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-October/001311.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-October/001311.html
http://code.google.com/p/android/issues/detail?id=23971
http://www.ietf.org/mail-archive/web/imapext/current/msg00458.html
http://www.ietf.org/mail-archive/web/imapext/current/msg00458.html
http://www.ietf.org/rfc/rfc4731.txt
http://www.ietf.org/mail-archive/web/imapext/current/msg00477.html
http://www.ietf.org/mail-archive/web/imapext/current/msg00477.html
http://www.ietf.org/mail-archive/web/imapext/current/msg00472.html
http://www.ietf.org/mail-archive/web/imapext/current/msg00472.html

[28] Dave Cridland. UID SEARCH responses. Comments on the IETF’s imapext mail-
ing list, August 2007. URL http://www.ietf.org/mail-archive/web/imapext/
current/msg00482.html.

[29] A. Melnikov and S. Hole. IMAP Extension for Conditional STORE Operation or
Quick Flag Changes Resynchronization. RFC 4551 (Proposed Standard), June
2006. URL http://www.ietf.org/rfc/rfc4551.txt.

[30] A. Melnikov, D. Cridland, and C. Wilson. IMAP4 Extensions for Quick Mailbox
Resynchronization. RFC 5162 (Proposed Standard), March 2008. URL http:
//www.ietf.org/rfc/rfc5162.txt.

[31] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119
(Best Current Practice), March 1997. URL http://www.ietf.org/rfc/rfc2119.
txt.

[32] Jan Kundrát. QRESYNC and new arrivals which get deleted immediately
through VANISHED. Comments on the imap-protocol mailing list, June
2012. URL http://mailman2.u.washington.edu/pipermail/imap-protocol/
2012-June/001781.html.

[33] A. Gulbrandsen, C. King, and A. Melnikov. The IMAP NOTIFY Extension.
RFC 5465 (Proposed Standard), February 2009. URL http://www.ietf.org/rfc/
rfc5465.txt.

[34] A. Gulbrandsen and A. Melnikov. The IMAP ENABLE Extension. RFC 5161
(Proposed Standard), March 2008. URL http://www.ietf.org/rfc/rfc5161.txt.

[35] Alfred Hoenes. Errata #1365 for RFC5162, March 2008. URL http://www.
rfc-editor.org/errata_search.php?rfc=5162.

[36] Alexey Melnikov. QRESYNC and new arrivals which get deleted immedi-
ately through VANISHED. Comments on the imap-protocol mailing list, June
2012. URL http://mailman2.u.washington.edu/pipermail/imap-protocol/
2012-June/001784.html.

[37] L. Nerenberg. IMAP4 Binary Content Extension. RFC 3516 (Proposed Stan-
dard), April 2003. URL http://www.ietf.org/rfc/rfc3516.txt. Updated by RFC
4466.

[38] A. Melnikov and P. Coates. Internet Message Access Protocol - CONVERT
Extension. RFC 5259 (Proposed Standard), July 2008. URL http://www.ietf.
org/rfc/rfc5259.txt.

[39] P. Resnick and C. Newman. IMAP Support for UTF-8. RFC 5738 (Experimen-
tal), March 2010. URL http://www.ietf.org/rfc/rfc5738.txt.

[40] M. Crispin and K. Murchison. Internet Message Access Protocol - SORT and
THREAD Extensions. RFC 5256 (Proposed Standard), June 2008. URL http:
//www.ietf.org/rfc/rfc5256.txt. Updated by RFC 5957.

[41] D. Karp. Display-Based Address Sorting for the IMAP4 SORT Extension. RFC
5957 (Proposed Standard), July 2010. URL http://www.ietf.org/rfc/rfc5957.
txt.

100

http://www.ietf.org/mail-archive/web/imapext/current/msg00482.html
http://www.ietf.org/mail-archive/web/imapext/current/msg00482.html
http://www.ietf.org/rfc/rfc4551.txt
http://www.ietf.org/rfc/rfc5162.txt
http://www.ietf.org/rfc/rfc5162.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://mailman2.u.washington.edu/pipermail/imap-protocol/2012-June/001781.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2012-June/001781.html
http://www.ietf.org/rfc/rfc5465.txt
http://www.ietf.org/rfc/rfc5465.txt
http://www.ietf.org/rfc/rfc5161.txt
http://www.rfc-editor.org/errata_search.php?rfc=5162
http://www.rfc-editor.org/errata_search.php?rfc=5162
http://mailman2.u.washington.edu/pipermail/imap-protocol/2012-June/001784.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2012-June/001784.html
http://www.ietf.org/rfc/rfc3516.txt
http://www.ietf.org/rfc/rfc5259.txt
http://www.ietf.org/rfc/rfc5259.txt
http://www.ietf.org/rfc/rfc5738.txt
http://www.ietf.org/rfc/rfc5256.txt
http://www.ietf.org/rfc/rfc5256.txt
http://www.ietf.org/rfc/rfc5957.txt
http://www.ietf.org/rfc/rfc5957.txt

[42] Arnt Gulbrandsen. The IMAP SEARCH=INTHREAD and THREAD=REFS
Extensions. Published IETF Internet Draft, July 2010. URL http://tools.ietf.
org/html/draft-ietf-morg-inthread-01.

[43] D. Cridland and C. King. Contexts for IMAP4. RFC 5267 (Proposed Standard),
July 2008. URL http://www.ietf.org/rfc/rfc5267.txt. Updated by RFC 5465.

[44] Does Gmail support all IMAP features? GMail’s Support website, . URL http:
//support.google.com/mail/bin/answer.py?hl=en&answer=78761.

[45] Extension of the SEARCH command: X-GM-RAW. Google Developers — Google
App Platform website, . URL https://developers.google.com/google-apps/
gmail/imap_extensions#extension_of_the_search_command_x-gm-raw.

[46] T. Sirainen. IMAP4 Extension for Fuzzy Search. RFC 6203 (Proposed Standard),
March 2011. URL http://www.ietf.org/rfc/rfc6203.txt.

[47] R. Gellens. IMAP Regular Expressions SEARCH Extension. Pub-
lished IETF Internet Draft, March 2000. URL http://tools.ietf.org/html/
draft-ietf-imapext-regex-00.

[48] Mark Crispin. "SCAN" capability ? Comments on the imap-protocol
mailing list, May 2007. URL http://mailman2.u.washington.edu/pipermail/
imap-protocol/2007-May/000535.html.

[49] B. Leiba and A. Melnikov. IMAP4 Multimailbox SEARCH Extension. RFC 6237
(Experimental), May 2011. URL http://www.ietf.org/rfc/rfc6237.txt.

[50] M. Gahrns and R. Cheng. The Internet Message Action Protocol (IMAP4) Child
Mailbox Extension. RFC 3348 (Informational), July 2002. URL http://www.
ietf.org/rfc/rfc3348.txt.

[51] A. Melnikov and T. Sirainen. IMAP4 Extension for Returning STATUS Infor-
mation in Extended LIST. RFC 5819 (Proposed Standard), March 2010. URL
http://www.ietf.org/rfc/rfc5819.txt.

[52] Michael J. Wener. IMAP Extension for CLEARIDLE. Published
IETF Internet Draft, February 2005. URL http://tools.ietf.org/html/
draft-wener-lemonade-clearidle-02.

[53] Arnt Gulbrandsen. The IMAP NOSTORE Extension. Published
IETF Internet Draft, February 2006. URL http://tools.ietf.org/html/
draft-gulbrandsen-imap-nostore-00.

[54] K. K. Tibanne and Mark Karpeles. IMAP4 IDLEPLUS extension. Pub-
lished IETF Internet Draft, June 2010. URL http://tools.ietf.org/html/
draft-magicaltux-imap4-idleplus-01.

[55] Arnt Gulbrandsen. On good and bad RFCs. Personal blog, March 2012. URL
http://rant.gulbrandsen.priv.no/good-bad-rfc.

[56] Timo Sirainen. IMAP NOTIFY extension. The Dovecot mailing list, February
2012. URL http://dovecot.org/list/dovecot/2012-February/064031.html.

[57] Dovecot’s source code in Mercurial, the dovecot-2.2-notify branch. Source code
repository, July 2012. URL http://hg.dovecot.org/dovecot-2.2-notify/rev/
201b097d5b58.

101

http://tools.ietf.org/html/draft-ietf-morg-inthread-01
http://tools.ietf.org/html/draft-ietf-morg-inthread-01
http://www.ietf.org/rfc/rfc5267.txt
http://support.google.com/mail/bin/answer.py?hl=en&answer=78761
http://support.google.com/mail/bin/answer.py?hl=en&answer=78761
https://developers.google.com/google-apps/gmail/imap_extensions#extension_of_the_search_command_x-gm-raw
https://developers.google.com/google-apps/gmail/imap_extensions#extension_of_the_search_command_x-gm-raw
http://www.ietf.org/rfc/rfc6203.txt
http://tools.ietf.org/html/draft-ietf-imapext-regex-00
http://tools.ietf.org/html/draft-ietf-imapext-regex-00
http://mailman2.u.washington.edu/pipermail/imap-protocol/2007-May/000535.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2007-May/000535.html
http://www.ietf.org/rfc/rfc6237.txt
http://www.ietf.org/rfc/rfc3348.txt
http://www.ietf.org/rfc/rfc3348.txt
http://www.ietf.org/rfc/rfc5819.txt
http://tools.ietf.org/html/draft-wener-lemonade-clearidle-02
http://tools.ietf.org/html/draft-wener-lemonade-clearidle-02
http://tools.ietf.org/html/draft-gulbrandsen-imap-nostore-00
http://tools.ietf.org/html/draft-gulbrandsen-imap-nostore-00
http://tools.ietf.org/html/draft-magicaltux-imap4-idleplus-01
http://tools.ietf.org/html/draft-magicaltux-imap4-idleplus-01
http://rant.gulbrandsen.priv.no/good-bad-rfc
http://dovecot.org/list/dovecot/2012-February/064031.html
http://hg.dovecot.org/dovecot-2.2-notify/rev/201b097d5b58
http://hg.dovecot.org/dovecot-2.2-notify/rev/201b097d5b58

[58] M. Crispin. Internet Message Access Protocol (IMAP) - MULTIAPPEND Ex-
tension. RFC 3502 (Proposed Standard), March 2003. URL http://www.ietf.
org/rfc/rfc3502.txt. Updated by RFCs 4466, 4469.

[59] P. Resnick. Internet Message Access Protocol (IMAP) CATENATE Extension.
RFC 4469 (Proposed Standard), April 2006. URL http://www.ietf.org/rfc/
rfc4469.txt. Updated by RFC 5550.

[60] R. Gellens and J. Klensin. Message Submission for Mail. RFC 6409 (Standard),
November 2011. URL http://www.ietf.org/rfc/rfc6409.txt.

[61] C. Newman. Message Submission BURL Extension. RFC 4468 (Proposed Stan-
dard), May 2006. URL http://www.ietf.org/rfc/rfc4468.txt. Updated by RFC
5248.

[62] M. Crispin. Internet Message Access Protocol (IMAP) - URLAUTH Exten-
sion. RFC 4467 (Proposed Standard), May 2006. URL http://www.ietf.org/
rfc/rfc4467.txt. Updated by RFCs 5092, 5550.

[63] Thiago Macieira and Don Sanders. [QTMOBILITY-1911] Sending any email
fails after BURL command is sent. The Qt Bug Tracker, October 2011. URL
https://bugreports.qt-project.org/browse/QTMOBILITY-1911.

[64] Mark Crispin. Re: [imap5] Where is IMAP5 ? Comments on the IETF’s imap5
mailing list, July 2011. URL http://www.ietf.org/mail-archive/web/imap5/
current/msg00162.html.

[65] Dave Cridland. Re: [imap5] Where is IMAP5 ? Comments on the IETF’s imap5
mailing list, July 2011. URL http://www.ietf.org/mail-archive/web/imap5/
current/msg00176.html.

[66] S. H. Maes, C. Kuang, R. Lima, R. Cromwell, E. Chiu, J. Day, R. Ahad,
Wook-Hyun Jeong, Gustaf Rosell, J. Sini, Sung-Mu Son, Fan Xiaohui, Zhao
Lijun, and D. Bennett. Push Extensions to the IMAP Protocol (P-IMAP).
Published IETF Internet Draft, March 2006. URL http://tools.ietf.org/html/
draft-maes-lemonade-p-imap-12.

[67] Bron Gondwana. Re: [imap5] Where is IMAP5 ? Comments on the IETF’s
imap5 mailing list, July 2011. URL http://www.ietf.org/mail-archive/web/
imap5/current/msg00163.html.

[68] Mark Crispin. Re: [imap5] Where is IMAP5 ? Comments on the IETF’s imap5
mailing list, July 2011. URL http://www.ietf.org/mail-archive/web/imap5/
current/msg00177.html.

[69] A. Melnikov. IMAP4 POSTADDRESS extension. Published IETF
Internet Draft, September 2010. URL http://tools.ietf.org/html/
draft-melnikov-imap-postaddress-07.

[70] T. Showalter. IMAP4 ID extension. RFC 2971 (Proposed Standard), October
2000. URL http://www.ietf.org/rfc/rfc2971.txt.

[71] C. Newman, A. Gulbrandsen, and A. Melnikov. Internet Message Access Protocol
Internationalization. RFC 5255 (Proposed Standard), June 2008. URL http:
//www.ietf.org/rfc/rfc5255.txt.

102

http://www.ietf.org/rfc/rfc3502.txt
http://www.ietf.org/rfc/rfc3502.txt
http://www.ietf.org/rfc/rfc4469.txt
http://www.ietf.org/rfc/rfc4469.txt
http://www.ietf.org/rfc/rfc6409.txt
http://www.ietf.org/rfc/rfc4468.txt
http://www.ietf.org/rfc/rfc4467.txt
http://www.ietf.org/rfc/rfc4467.txt
https://bugreports.qt-project.org/browse/QTMOBILITY-1911
http://www.ietf.org/mail-archive/web/imap5/current/msg00162.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00162.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00176.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00176.html
http://tools.ietf.org/html/draft-maes-lemonade-p-imap-12
http://tools.ietf.org/html/draft-maes-lemonade-p-imap-12
http://www.ietf.org/mail-archive/web/imap5/current/msg00163.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00163.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00177.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00177.html
http://tools.ietf.org/html/draft-melnikov-imap-postaddress-07
http://tools.ietf.org/html/draft-melnikov-imap-postaddress-07
http://www.ietf.org/rfc/rfc2971.txt
http://www.ietf.org/rfc/rfc5255.txt
http://www.ietf.org/rfc/rfc5255.txt

[72] A. Gulbrandsen. IMAP Response Codes. RFC 5530 (Proposed Standard), May
2009. URL http://www.ietf.org/rfc/rfc5530.txt.

[73] C. Newman, M. Duerst, and A. Gulbrandsen. Internet Application Protocol
Collation Registry. RFC 4790 (Proposed Standard), March 2007. URL http:
//www.ietf.org/rfc/rfc4790.txt.

[74] M. Crispin. i;unicode-casemap - Simple Unicode Collation Algorithm. RFC 5051
(Proposed Standard), October 2007. URL http://www.ietf.org/rfc/rfc5051.txt.

[75] P. Resnick, C. Newman, and S. Shen. IMAP Support for UTF-8. Pub-
lished IETF Internet Draft, June 2012. URL http://tools.ietf.org/html/
draft-ietf-eai-5738bis-04.

[76] Jan Kundrát. Working with QDateTime’s timezone information. The Qt-interest
mailing list, June 2012. URL http://thread.gmane.org/gmane.comp.lib.qt.
user/2225.

[77] M. Crispin. Distributed Electronic Mail Models in IMAP4. RFC 1733 (Informa-
tional), December 1994. URL http://www.ietf.org/rfc/rfc1733.txt.

[78] M. Gahrns. IMAP4 Multi-Accessed Mailbox Practice. RFC 2180 (Informational),
July 1997. URL http://www.ietf.org/rfc/rfc2180.txt.

[79] B. Leiba. IMAP4 Implementation Recommendations. RFC 2683 (Informational),
September 1999. URL http://www.ietf.org/rfc/rfc2683.txt.

[80] Mark Crispin. Ten Commandments of How to Write an IMAP client. URL
http://www.washington.edu/imap/documentation/commndmt.txt.html.

[81] Timo Sirainen and Dave Cridland. IMAP Client Coding HOWTO. URL http:
//dovecot.org/imap-client-coding-howto.html.

[82] Best Practices for Implementing an IMAP Client. The IMAP Protocol Wiki.
URL http://www.imapwiki.org/ClientImplementation.

[83] A. Melnikov. Internet Message Access Protocol (IMAP) UNSELECT command.
RFC 3691 (Proposed Standard), February 2004. URL http://www.ietf.org/rfc/
rfc3691.txt.

[84] M. Crispin. Internet Message Access Protocol (IMAP) - UIDPLUS extension.
RFC 4315 (Proposed Standard), December 2005. URL http://www.ietf.org/
rfc/rfc4315.txt.

[85] Jan Kundrát. [imapext] I-D ACTION:draft-ietf-imapmove-command-00.txt.
Comments on the IETF’s imapext mailing list, June 2012. URL http://www.
ietf.org/mail-archive/web/imapext/current/msg04464.html.

[86] A. Melnikov and C. Daboo. Collected Extensions to IMAP4 ABNF. RFC 4466
(Proposed Standard), April 2006. URL http://www.ietf.org/rfc/rfc4466.txt.
Updated by RFC 6237.

[87] A. Melnikov and D. Cridland. IMAP4 Keyword Registry. RFC 5788 (Proposed
Standard), March 2010. URL http://www.ietf.org/rfc/rfc5788.txt.

[88] B. Leiba and A. Melnikov. Internet Message Access Protocol version 4 - LIST
Command Extensions. RFC 5258 (Proposed Standard), June 2008. URL http:
//www.ietf.org/rfc/rfc5258.txt.

103

http://www.ietf.org/rfc/rfc5530.txt
http://www.ietf.org/rfc/rfc4790.txt
http://www.ietf.org/rfc/rfc4790.txt
http://www.ietf.org/rfc/rfc5051.txt
http://tools.ietf.org/html/draft-ietf-eai-5738bis-04
http://tools.ietf.org/html/draft-ietf-eai-5738bis-04
http://thread.gmane.org/gmane.comp.lib.qt.user/2225
http://thread.gmane.org/gmane.comp.lib.qt.user/2225
http://www.ietf.org/rfc/rfc1733.txt
http://www.ietf.org/rfc/rfc2180.txt
http://www.ietf.org/rfc/rfc2683.txt
http://www.washington.edu/imap/documentation/commndmt.txt.html
http://dovecot.org/imap-client-coding-howto.html
http://dovecot.org/imap-client-coding-howto.html
http://www.imapwiki.org/ClientImplementation
http://www.ietf.org/rfc/rfc3691.txt
http://www.ietf.org/rfc/rfc3691.txt
http://www.ietf.org/rfc/rfc4315.txt
http://www.ietf.org/rfc/rfc4315.txt
http://www.ietf.org/mail-archive/web/imapext/current/msg04464.html
http://www.ietf.org/mail-archive/web/imapext/current/msg04464.html
http://www.ietf.org/rfc/rfc4466.txt
http://www.ietf.org/rfc/rfc5788.txt
http://www.ietf.org/rfc/rfc5258.txt
http://www.ietf.org/rfc/rfc5258.txt

[89] D. Cridland, A. Melnikov, and S. Maes. The Internet Email to Support Diverse
Service Environments (Lemonade) Profile. RFC 5550 (Proposed Standard), Au-
gust 2009. URL http://www.ietf.org/rfc/rfc5550.txt.

[90] S. Maes and A. Melnikov. Internet Email to Support Diverse Service Environ-
ments (Lemonade) Profile. RFC 4550 (Proposed Standard), June 2006. URL
http://www.ietf.org/rfc/rfc4550.txt. Obsoleted by RFC 5550.

[91] M. Gahrns. IMAP4 Login Referrals. RFC 2221 (Proposed Standard), October
1997. URL http://www.ietf.org/rfc/rfc2221.txt.

[92] M. Gahrns. IMAP4 Mailbox Referrals. RFC 2193 (Proposed Standard), Septem-
ber 1997. URL http://www.ietf.org/rfc/rfc2193.txt.

[93] Bug 59704 - support for IMAP Referrals (RFC2221, RFC2193), when server
advertises MAILBOX-REFERRALS we should use RLIST and RLSUB (will help
with MS Exchange and others). Mozilla Thuderbird bug tracker. URL https:
//bugzilla.mozilla.org/show_bug.cgi?id=59704.

[94] Rob Siemborski. A few MAILBOX-REFERRALS and NAMESPACE ques-
tions. Comments on the imap-protocol mailing list, January 2007. URL
http://mailman2.u.washington.edu/pipermail/imap-protocol/2007-January/
000360.html.

[95] M. Gahrns and C. Newman. IMAP4 Namespace. RFC 2342 (Proposed Standard),
May 1998. URL http://www.ietf.org/rfc/rfc2342.txt. Updated by RFC 4466.

[96] A. Melnikov. IMAP4 Access Control List (ACL) Extension. RFC 4314 (Proposed
Standard), December 2005. URL http://www.ietf.org/rfc/rfc4314.txt.

[97] J. Myers. IMAP4 ACL extension. RFC 2086 (Proposed Standard), January 1997.
URL http://www.ietf.org/rfc/rfc2086.txt. Obsoleted by RFC 4314.

[98] J. Myers. IMAP4 QUOTA extension. RFC 2087 (Proposed Standard), January
1997. URL http://www.ietf.org/rfc/rfc2087.txt.

[99] J. Myers. IMAP4 Authentication Mechanisms. RFC 1731 (Proposed Standard),
December 1994. URL http://www.ietf.org/rfc/rfc1731.txt.

[100] R. Siemborski and A. Gulbrandsen. IMAP Extension for Simple Authentica-
tion and Security Layer (SASL) Initial Client Response. RFC 4959 (Proposed
Standard), September 2007. URL http://www.ietf.org/rfc/rfc4959.txt.

[101] C. Daboo. Use of SRV Records for Locating Email Submission/Access Services.
RFC 6186 (Proposed Standard), March 2011. URL http://www.ietf.org/rfc/
rfc6186.txt.

[102] C. Daboo and R. Gellens. Internet Message Access Protocol - ANNOTATE
Extension. RFC 5257 (Experimental), June 2008. URL http://www.ietf.org/
rfc/rfc5257.txt.

[103] C. Daboo. The IMAP METADATA Extension. RFC 5464 (Proposed Standard),
February 2009. URL http://www.ietf.org/rfc/rfc5464.txt.

[104] E. Burger. WITHIN Search Extension to the IMAP Protocol. RFC 5032 (Pro-
posed Standard), September 2007. URL http://www.ietf.org/rfc/rfc5032.txt.

104

http://www.ietf.org/rfc/rfc5550.txt
http://www.ietf.org/rfc/rfc4550.txt
http://www.ietf.org/rfc/rfc2221.txt
http://www.ietf.org/rfc/rfc2193.txt
https://bugzilla.mozilla.org/show_bug.cgi?id=59704
https://bugzilla.mozilla.org/show_bug.cgi?id=59704
http://mailman2.u.washington.edu/pipermail/imap-protocol/2007-January/000360.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2007-January/000360.html
http://www.ietf.org/rfc/rfc2342.txt
http://www.ietf.org/rfc/rfc4314.txt
http://www.ietf.org/rfc/rfc2086.txt
http://www.ietf.org/rfc/rfc2087.txt
http://www.ietf.org/rfc/rfc1731.txt
http://www.ietf.org/rfc/rfc4959.txt
http://www.ietf.org/rfc/rfc6186.txt
http://www.ietf.org/rfc/rfc6186.txt
http://www.ietf.org/rfc/rfc5257.txt
http://www.ietf.org/rfc/rfc5257.txt
http://www.ietf.org/rfc/rfc5464.txt
http://www.ietf.org/rfc/rfc5032.txt

[105] A. Melnikov. IMAP Extension for Referencing the Last SEARCH Result. RFC
5182 (Proposed Standard), March 2008. URL http://www.ietf.org/rfc/rfc5182.
txt.

[106] A. Melnikov and C. King. IMAP4 Extension for Named Searches (Filters).
RFC 5466 (Proposed Standard), February 2009. URL http://www.ietf.org/rfc/
rfc5466.txt.

[107] A. Melnikov. Message Disposition Notification (MDN) profile for Internet Mes-
sage Access Protocol (IMAP). RFC 3503 (Proposed Standard), March 2003. URL
http://www.ietf.org/rfc/rfc3503.txt.

[108] N. Cook. Streaming Internet Messaging Attachments. RFC 5616 (Informational),
August 2009. URL http://www.ietf.org/rfc/rfc5616.txt.

[109] M.R. Crispin. Interactive Mail Access Protocol: Version 2. RFC 1064, July 1988.
URL http://www.ietf.org/rfc/rfc1064.txt. Obsoleted by RFCs 1176, 1203.

[110] M.R. Crispin. Interactive Mail Access Protocol: Version 2. RFC 1176 (Experi-
mental), August 1990. URL http://www.ietf.org/rfc/rfc1176.txt.

[111] J. Rice. Interactive Mail Access Protocol: Version 3. RFC 1203 (Historic),
February 1991. URL http://www.ietf.org/rfc/rfc1203.txt.

[112] M. Crispin. Internet Message Access Protocol - Version 4. RFC 1730 (Proposed
Standard), December 1994. URL http://www.ietf.org/rfc/rfc1730.txt. Obso-
leted by RFCs 2060, 2061.

[113] M. Crispin. IMAP4 Compatibility with IMAP2 and IMAP2bis. RFC 1732 (In-
formational), December 1994. URL http://www.ietf.org/rfc/rfc1732.txt.

[114] M. Crispin. Internet Message Access Protocol - Version 4rev1. RFC 2060 (Pro-
posed Standard), December 1996. URL http://www.ietf.org/rfc/rfc2060.txt.
Obsoleted by RFC 3501.

[115] M. Crispin. IMAP4 Compatibility with IMAP2bis. RFC 2061 (Informational),
December 1996. URL http://www.ietf.org/rfc/rfc2061.txt.

[116] M. Crispin. Internet Message Access Protocol - Obsolete Syntax. RFC 2062
(Informational), December 1996. URL http://www.ietf.org/rfc/rfc2062.txt.

[117] J. Myers. IMAP4 UIDPLUS extension. RFC 2359 (Proposed Standard), June
1998. URL http://www.ietf.org/rfc/rfc2359.txt. Obsoleted by RFC 4315.

[118] The RFC Editor. Formatting RFCs. The RFC Editor homepage, November 2010.
URL http://www.rfc-editor.org/formatting.html.

[119] S. Sherry and G. Meyer. Protocol Analysis for Triggered RIP. RFC 2092 (Infor-
mational), January 1997. URL http://www.ietf.org/rfc/rfc2092.txt.

[120] Jan Kundrát. IMAP QRESYNC-ARRIVED Extension. Comments on the imap-
protocol mailing list, July 2012. URL http://mailman2.u.washington.edu/
pipermail/imap-protocol/2012-July/001799.html.

[121] Jan Kundrát. [imapext] Draft for server-side incremental threading. Comments
on the IETF’s imapext mailing list, July 2012. URL http://www.ietf.org/
mail-archive/web/imapext/current/msg04555.html.

105

http://www.ietf.org/rfc/rfc5182.txt
http://www.ietf.org/rfc/rfc5182.txt
http://www.ietf.org/rfc/rfc5466.txt
http://www.ietf.org/rfc/rfc5466.txt
http://www.ietf.org/rfc/rfc3503.txt
http://www.ietf.org/rfc/rfc5616.txt
http://www.ietf.org/rfc/rfc1064.txt
http://www.ietf.org/rfc/rfc1176.txt
http://www.ietf.org/rfc/rfc1203.txt
http://www.ietf.org/rfc/rfc1730.txt
http://www.ietf.org/rfc/rfc1732.txt
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2061.txt
http://www.ietf.org/rfc/rfc2062.txt
http://www.ietf.org/rfc/rfc2359.txt
http://www.rfc-editor.org/formatting.html
http://www.ietf.org/rfc/rfc2092.txt
http://mailman2.u.washington.edu/pipermail/imap-protocol/2012-July/001799.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2012-July/001799.html
http://www.ietf.org/mail-archive/web/imapext/current/msg04555.html
http://www.ietf.org/mail-archive/web/imapext/current/msg04555.html

[122] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard), October
2008. URL http://www.ietf.org/rfc/rfc5321.txt.

[123] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),
April 2001. URL http://www.ietf.org/rfc/rfc2821.txt. Obsoleted by RFC 5321,
updated by RFC 5336.

[124] Mozilla et al. Thunderbird:Autoconfiguration. Mozilla’s wiki, online, May 2011.
URL https://wiki.mozilla.org/Thunderbird:Autoconfiguration.

[125] Dave Crocker. [imap5] Beep. Comments on the IETF’s imap5 mailing list, May
2012. URL http://www.ietf.org/mail-archive/web/imap5/current/msg00488.
html.

[126] Adrien de Croy. Re: [imap5] Designing a new replacement protocol for IMAP.
Comments on the IETF’s imap5 mailing list, February 2012. URL http://www.
ietf.org/mail-archive/web/imap5/current/msg00301.html.

[127] Giovanni Panozzo. Re: [imap5] Where is IMAP5 ? Comments on the IETF’s
imap5 mailing list, July 2011. URL http://www.ietf.org/mail-archive/web/
imap5/current/msg00192.html.

[128] R. Gellens. IMAP Submit Without Download. Published IETF Internet Draft,
October 2003. URL http://tools.ietf.org/html/draft-ietf-lemonade-submit-01.

[129] N. Freed. SMTP Service Extension for Command Pipelining. RFC 2920 (Stan-
dard), September 2000. URL http://www.ietf.org/rfc/rfc2920.txt.

[130] Arnt Gulbrandsen. Re: Requesting comments on draft-melnikov-imap-
postaddress-05.txt. Comments on the IETF’s imapext mailing list, Novem-
ber 2006. URL http://www.ietf.org/mail-archive/web/imapext/current/
msg00828.html.

[131] Bron Gondwana. Re: [imap5] Where is IMAP5 ? Comments on the IETF’s
imap5 mailing list, July 2011. URL http://www.ietf.org/mail-archive/web/
imap5/current/msg00148.html.

[132] Mark Crispin. Re: [imap5] Where is IMAP5 ?, July 2011. URL http://www.
ietf.org/mail-archive/web/imap5/current/msg00164.html.

[133] Jan Kundrát. [imapext] Mail submission over IMAP. Comments on the IETF’s
imapext mailing list, July 2012. URL http://www.ietf.org/mail-archive/web/
imapext/current/msg04518.html.

[134] Mike Abbott. Patch: support BURL. Apple’s Opensource site (online), April
2010. URL http://www.opensource.apple.com/source/postfix/postfix-229/
patches/burl.patch.

[135] Timo Sirainen. [IMAP Server Support Matrix] Specifications. The IMAP Protocol
Wiki, June 2012. URL http://imapwiki.org/Specs.

[136] Isode Ltd. IMAP Enhancements in iPhone OS Update (iOS 4).
Online, July 2010. URL http://isode.com/company/wordpress/
imap-enhancements-in-iphone-os-update-ios-4/.

106

http://www.ietf.org/rfc/rfc5321.txt
http://www.ietf.org/rfc/rfc2821.txt
https://wiki.mozilla.org/Thunderbird:Autoconfiguration
http://www.ietf.org/mail-archive/web/imap5/current/msg00488.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00488.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00301.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00301.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00192.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00192.html
http://tools.ietf.org/html/draft-ietf-lemonade-submit-01
http://www.ietf.org/rfc/rfc2920.txt
http://www.ietf.org/mail-archive/web/imapext/current/msg00828.html
http://www.ietf.org/mail-archive/web/imapext/current/msg00828.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00148.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00148.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00164.html
http://www.ietf.org/mail-archive/web/imap5/current/msg00164.html
http://www.ietf.org/mail-archive/web/imapext/current/msg04518.html
http://www.ietf.org/mail-archive/web/imapext/current/msg04518.html
http://www.opensource.apple.com/source/postfix/postfix-229/patches/burl.patch
http://www.opensource.apple.com/source/postfix/postfix-229/patches/burl.patch
http://imapwiki.org/Specs
http://isode.com/company/wordpress/imap-enhancements-in-iphone-os-update-ios-4/
http://isode.com/company/wordpress/imap-enhancements-in-iphone-os-update-ios-4/

[137] Steve Jobs. Re: iOS IMAP IDLE (Standard P̈ush Email̈) De-
ficiency, Explanation? Private message forwarded to the imap-
protocol mailing list, October 2010. URL http://mailman2.u.
washington.edu/pipermail/imap-protocol/attachments/20101004/e96c54cf/
iOSIMAPIDLEStandardPushEmailDeficiencyExplanation.eml.

[138] Henry Haverinen, Jonne Siren, and Pasi Eronen. Energy Consumption of
Always-On Applications in WCDMA Networks. 2007. ISSN 1550-2252. doi:
10.1109/VETECS.2007.207. URL http://www.pasieronen.com/publications/
haverinen_siren_eronen_vtc2007.pdf.

[139] Dave Cridland. [Imap-protocol] Fwd: iOS IMAP IDLE (Standard "Push Email")
Deficiency, Explanation? Comments on the imap-protocol mailing list, Octo-
ber 2010. URL http://mailman2.u.washington.edu/pipermail/imap-protocol/
2010-October/001303.html.

[140] Mark Crispin. [Imap-protocol] Fwd: iOS IMAP IDLE (Standard "Push Email")
Deficiency, Explanation? Comments on the imap-protocol mailing list, Octo-
ber 2010. URL http://mailman2.u.washington.edu/pipermail/imap-protocol/
2010-October/001298.html.

[141] k9mail. (Online), 2012. URL http://code.google.com/p/k9mail/.

[142] Tinymail. (Online), 2012. URL https://gitorious.org/tinymail#more.

[143] The Qt Messaging Framework. (Online), 2012. URL https://qt.gitorious.org/
qt-labs/messagingframework.

[144] A. Melnikov and C. Newman. IMAP URL Scheme. RFC 5092 (Proposed Stan-
dard), November 2007. URL http://www.ietf.org/rfc/rfc5092.txt. Updated by
RFC 5593.

[145] Extension of the list command: Xlist. Google Developers — Google App
Platform website, . URL https://developers.google.com/google-apps/gmail/
imap_extensions#extension_of_the_list_command_xlist.

[146] Jan Kundrát. Trojitá, a Qt IMAP e-mail client. (Online), 2012. URL http:
//trojita.flaska.net/.

[147] Isode Ltd. LEMONADE Profile: The Key Standard for Mobile Messaging. On-
line, June 2006. URL http://www.isode.com/whitepapers/lemonade-profile.
html.

[148] Timo Sirainen. Open email survey. (Online), 2012. URL http://
openemailsurvey.org/.

[149] The Qt Project. Introduction to the QML Language. Qt Documentation (online),
2012. URL http://qt-project.org/doc/qt-4.8/qdeclarativeintroduction.html.

[150] The Qt Project. The Interview Framework. Qt Documentation (online), 2012.
URL http://qt-project.org/doc/qt-4.8/qt4-interview.html.

[151] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF.
RFC 5234 (Standard), January 2008. URL http://www.ietf.org/rfc/rfc5234.txt.

[152] The SQLite Developers. SQLite Home Page. Online, 2012. URL http://www.
sqlite.org/.

107

http://mailman2.u.washington.edu/pipermail/imap-protocol/attachments/20101004/e96c54cf/iOSIMAPIDLEStandardPushEmailDeficiencyExplanation.eml
http://mailman2.u.washington.edu/pipermail/imap-protocol/attachments/20101004/e96c54cf/iOSIMAPIDLEStandardPushEmailDeficiencyExplanation.eml
http://mailman2.u.washington.edu/pipermail/imap-protocol/attachments/20101004/e96c54cf/iOSIMAPIDLEStandardPushEmailDeficiencyExplanation.eml
http://www.pasieronen.com/publications/haverinen_siren_eronen_vtc2007.pdf
http://www.pasieronen.com/publications/haverinen_siren_eronen_vtc2007.pdf
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-October/001303.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-October/001303.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-October/001298.html
http://mailman2.u.washington.edu/pipermail/imap-protocol/2010-October/001298.html
http://code.google.com/p/k9mail/
https://gitorious.org/tinymail#more
https://qt.gitorious.org/qt-labs/messagingframework
https://qt.gitorious.org/qt-labs/messagingframework
http://www.ietf.org/rfc/rfc5092.txt
https://developers.google.com/google-apps/gmail/imap_extensions#extension_of_the_list_command_xlist
https://developers.google.com/google-apps/gmail/imap_extensions#extension_of_the_list_command_xlist
http://trojita.flaska.net/
http://trojita.flaska.net/
http://www.isode.com/whitepapers/lemonade-profile.html
http://www.isode.com/whitepapers/lemonade-profile.html
http://openemailsurvey.org/
http://openemailsurvey.org/
http://qt-project.org/doc/qt-4.8/qdeclarativeintroduction.html
http://qt-project.org/doc/qt-4.8/qt4-interview.html
http://www.ietf.org/rfc/rfc5234.txt
http://www.sqlite.org/
http://www.sqlite.org/

[153] Jan Kundrát. Using different QNetworkAccessManager instances for multiple
QML’s WebView items. The Qt-interest mailing list, 2012. URL http://thread.
gmane.org/gmane.comp.lib.qt.user/1807.

[154] Timo Sirainen. Dovecot’s index files. Dovecot Wiki (online), March 2009. URL
http://wiki2.dovecot.org/Design/Indexes.

[155] Valgrind Developers. Valgrind home. Online, 2012. URL http://valgrind.org/.

[156] Valgrind Developers. Callgrind: a call-graph generating cache and branch predic-
tion profiler. Online, 2012. URL http://valgrind.org/docs/manual/cl-manual.
html.

[157] Valgrind Developers. Massif: a heap profiler. Online, 2012. URL http://valgrind.
org/docs/manual/ms-manual.html.

[158] The KDE Community. KDE PIM/Akonadi. The KDE Community wiki (online),
2012. URL http://community.kde.org/KDE_PIM/Akonadi.

[159] Jan Kundrát. KWest GmbH to Sponsor Trojita’s Development. Personal blog,
April 2010. URL http://jkt.flaska.net/blog/KWest_GmbH_to_Sponsor_
Trojita_s_Development.html.

[160] OpenMFG LLC, dBa xTuple. xTuple Connect Email Integration. xTuple’s Web-
site, 2011. URL http://www.xtuple.org/emailIntegration/beta.

[161] Jan Kundrát. [Announce] Trojitá, a fast IMAP e-mail client. The MeeGo Forum,
April 2012. URL http://forum.meego.com/showthread.php?t=5837.

[162] OpenMobility. Vyhlášení výsledků. Online, April 2012. URL http://www.
openmobility.eu/konference/om2012/soutez/vyhlaseni-vysledku/.

108

http://thread.gmane.org/gmane.comp.lib.qt.user/1807
http://thread.gmane.org/gmane.comp.lib.qt.user/1807
http://wiki2.dovecot.org/Design/Indexes
http://valgrind.org/
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://community.kde.org/KDE_PIM/Akonadi
http://jkt.flaska.net/blog/KWest_GmbH_to_Sponsor_Trojita_s_Development.html
http://jkt.flaska.net/blog/KWest_GmbH_to_Sponsor_Trojita_s_Development.html
http://www.xtuple.org/emailIntegration/beta
http://forum.meego.com/showthread.php?t=5837
http://www.openmobility.eu/konference/om2012/soutez/vyhlaseni-vysledku/
http://www.openmobility.eu/konference/om2012/soutez/vyhlaseni-vysledku/

	Introduction
	Structure of the Thesis

	IMAP Protocol Essentials
	IMAP
	Basic Features
	Cache Filing Protocol

	Mailbox Synchronization
	Message Flags
	Immutable Data

	Protocol Design
	Additional Server-Side Features

	IMAP Extensions
	Optimizing the Protocol
	The LITERAL+ Extension
	Data Compression
	Improving Security through Cryptography
	The IDLE Mode

	Improving Mailbox Synchronization
	The ESEARCH Extension
	Avoiding Flags Resynchronization via CONDSTORE
	Optimizing UID Synchronization with QRESYNC

	Fetching the Data
	The BINARY Extension
	Server-side Conversions via CONVERT
	Metadata Decoding

	Updating Mailboxes
	Sorting Messages
	Threads and Conversations
	Incremental Sorting and Searching
	Advanced Searching
	Obtaining Statistics for Other Mailboxes
	Push-notification of Other Mailboxes' State

	Composing and Delivering Mail
	Further Improvements
	Debugging
	Internationalization
	Other Supported RFCs
	Out-of-scope Features

	Obsolete Extensions

	Proposed Extensions
	Announcing the UIDs of Newly Arriving Messages during the QRESYNC mode: the ARRIVED Extension
	Alternatives

	Improving Incremental Threading through Modified INTHREAD
	Existing Approach
	The INCTHREAD Extension

	Submitting Internet Mail — the SENDMAIL Extension
	Competing Proposals
	The ``Lemonade Trio''
	Tunneling SMTP inside IMAP
	The POSTADDRESS Draft

	The SENDMAIL Extension

	The Mobile IMAP
	The Lemonade Profile
	Cross-Service Requirements
	Complicated Extensions

	State of Other Client Implementations
	Apple iOS
	Android's Native E-mail Client
	Android's K-9 Mail
	Modest / Tinymail
	Nokia's Qt Messaging Framework
	Trojitá

	Evaluating Extensions
	The Bare Minimum
	LITERAL+
	IDLE
	ID
	BINARY
	UIDPLUS
	CHILDREN, LIST-EXTENDED and LIST-STATUS
	ESEARCH
	COMPRESS=DEFLATE

	Useful Extensions
	CONDSTORE and QRESYNC
	ENABLE
	MULTIAPPEND
	SENDMAIL
	CATENATE

	The Most Advanced Extensions
	SORT, SORT=DISPLAY and THREAD
	INCTHREAD, CONTEXT=SEARCH and CONTEXT=SORT
	SEARCH=FUZZY
	URLAUTH and BURL
	SPECIAL-USE and CREATE-SPECIAL-USE
	CONVERT
	NOTIFY and MULTISEARCH

	Trojitá's Architecture
	Overview of Components
	Handling Input/Output
	The Concept of Tasks
	Routing Responses
	Models and Proxies
	Lazy Loading and Cache

	The Mobile Version
	Regression Testing
	Scalability
	Command Pipelining
	Low-level optimization

	Conclusion
	Future Work

	Proposed Internet Drafts
	draft-imap-qresync-arrived
	draft-imap-incthread
	draft-imap-sendmail

	Acknowledgement
	Commercial Applications
	Partnership with KWest GmbH.
	Collaboration with OpenMFG LLC, dba xTuple
	Nokia Developer Participation

	Third-party Contributions
	Use of Existing Libraries

	The Attached CD
	Contents of the CD
	Build Instructions

